• Med Phys · Oct 2017

    Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.

    • Ioannis Lavdas, Ben Glocker, Konstantinos Kamnitsas, Daniel Rueckert, Henrietta Mair, Amandeep Sandhu, Stuart A Taylor, Eric O Aboagye, and Andrea G Rockall.
    • Imperial College Comprehensive Cancer Imaging Centre (C.C.I.C.), Hammersmith Campus, Commonwealth Building Main Office, Ground Floor, Du Cane Road, London, W12 0NN, UK.
    • Med Phys. 2017 Oct 1; 44 (10): 5210-5220.

    PurposeAs part of a program to implement automatic lesion detection methods for whole body magnetic resonance imaging (MRI) in oncology, we have developed, evaluated, and compared three algorithms for fully automatic, multiorgan segmentation in healthy volunteers.MethodsThe first algorithm is based on classification forests (CFs), the second is based on 3D convolutional neural networks (CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We examined data from 51 healthy volunteers, scanned prospectively with a standardized, multiparametric whole body MRI protocol at 1.5 T. The study was approved by the local ethics committee and written consent was obtained from the participants. MRI data were used as input data to the algorithms, while training was based on manual annotation of the anatomies of interest by clinical MRI experts. Fivefold cross-validation experiments were run on 34 artifact-free subjects. We report three overlap and three surface distance metrics to evaluate the agreement between the automatic and manual segmentations, namely the dice similarity coefficient (DSC), recall (RE), precision (PR), average surface distance (ASD), root-mean-square surface distance (RMSSD), and Hausdorff distance (HD). Analysis of variances was used to compare pooled label metrics between the three algorithms and the DSC on a 'per-organ' basis. A Mann-Whitney U test was used to compare the pooled metrics between CFs and CNNs and the DSC on a 'per-organ' basis, when using different imaging combinations as input for training.ResultsAll three algorithms resulted in robust segmenters that were effectively trained using a relatively small number of datasets, an important consideration in the clinical setting. Mean overlap metrics for all the segmented structures were: CFs: DSC = 0.70 ± 0.18, RE = 0.73 ± 0.18, PR = 0.71 ± 0.14, CNNs: DSC = 0.81 ± 0.13, RE = 0.83 ± 0.14, PR = 0.82 ± 0.10, MA: DSC = 0.71 ± 0.22, RE = 0.70 ± 0.34, PR = 0.77 ± 0.15. Mean surface distance metrics for all the segmented structures were: CFs: ASD = 13.5 ± 11.3 mm, RMSSD = 34.6 ± 37.6 mm and HD = 185.7 ± 194.0 mm, CNNs; ASD = 5.48 ± 4.84 mm, RMSSD = 17.0 ± 13.3 mm and HD = 199.0 ± 101.2 mm, MA: ASD = 4.22 ± 2.42 mm, RMSSD = 6.13 ± 2.55 mm, and HD = 38.9 ± 28.9 mm. The pooled performance of CFs improved when all imaging combinations (T2w + T1w + DWI) were used as input, while the performance of CNNs deteriorated, but in neither case, significantly. CNNs with T2w images as input, performed significantly better than CFs with all imaging combinations as input for all anatomical labels, except for the bladder.ConclusionsThree state-of-the-art algorithms were developed and used to automatically segment major organs and bones in whole body MRI; good agreement to manual segmentations performed by clinical MRI experts was observed. CNNs perform favorably, when using T2w volumes as input. Using multimodal MRI data as input to CNNs did not improve the segmentation performance.© 2017 American Association of Physicists in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.