• Clinical biomechanics · Mar 2000

    Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading.

    • M Solomonow, B He Zhou, R V Baratta, Y Lu, M Zhu, and M Harris.
    • Bioengineering Laboratory, Department of Orthopaedic Surgery, Louisiana State University Medical Center, New Orleans, LA 70112, USA. msolom@lsumc.edu
    • Clin Biomech (Bristol, Avon). 2000 Mar 1; 15 (3): 167-75.

    ObjectivesTo determine the rest duration required for full recovery of reflexive muscular activity and laxity/creep induced in the lumbar viscoelastic structures (e.g., ligaments, discs, etc.) after 50 min of cyclic loading, and to develop a model describing such recovery.BackgroundIt is well established that steady, cyclic or vibratory loading of the lumbar spine induces laxity/creep in its viscoelastic structures. It was also shown that such viscoelastic creep does not fully recover when subjected to rest equal in duration to the loading period. Rest periods of 24 h, however, were more than sufficient to allow full recovery. The exact period of time allowing full recovery of viscoelastic laxity/creep, and its pattern is not known. It is also not known what is the duration required for full recovery of reflexive muscular activity lost due to the laxity/creep induced in the spine during cyclic loading.MethodsThe lumbar spine of 'in vivo' feline preparations was subjected to 50 min of 0.25 Hz cyclic loading applied v ia the L4/5 supraspinal ligament. At the end of the loading period the spine was subjected to prolonged rest, interrupted by a single cycle loading applied hourly for measurement purposes until the laxity was fully recovered (>90%). Reflexive EMG activity was recorded with wire electrodes from the L-1-L-7 multifidus muscles. A biexponential model was fitted to the load and EMG recorded in the recovery period in order to represent viscous and elastic components of structures with different architecture (e.g., disc vs. ligament).ResultsFull recovery of the laxity induced by 50 min of cyclic loading at 0.25 Hz required 7 h and was successfully fitted with a biexponential model. Similarly, EMG activity was fully recovered in 4 hours, and often exceeded its initial value during the following 3 h.ConclusionsFull recovery of laxity induced in the lumbar viscoelastic structures by a given period of cyclic loading requires rest periods, which are several folds longer than the loading duration. Similarly, reflexive muscular activity requires 4 h of rest in order to be restored. Meanwhile, significant laxity can be present in the joints, exposing the spine to potential injury and low back pain. Increased EMG activity at the end of the recovery period may indicate that pain was possibly induced in the spinal structures, inducing hyperexcitability of the muscles during passive loading.RelevanceAlthough the data was derived from a feline model, and its extrapolation to the human model is not straightforward, the general pattern of decreasing reflexive muscular activity with cyclic loading is expected in both species. Therefore, workers who subject their spine to periods of cyclic loading may be exposed to prolonged periods of laxity beyond the neutral zone limits, without protection from the muscles and therefore the risk of possible injury and low back pain. Pain and muscle hyperexcitability could also be a factor associated with cyclic loading, being expressed several hours after work was completed.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…