• J. Neurosci. Methods · Jan 2009

    Neural traffic as voxel-based measure of cerebral functional connectivity in fMRI.

    • M Beu, S Baudrexel, H Hautzel, Chr Antke, and H-W Mueller.
    • Department of Nuclear Medicine, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany. beu@uni-duesseldorf.de
    • J. Neurosci. Methods. 2009 Jan 30; 176 (2): 263-9.

    AbstractTo access functional connectivity by in vivo brain imaging voxel-by-voxel, we developed a novel approach named neural traffic (NT). NT depicts the intensity of functional connectivity on a voxel-by-voxel basis in the whole brain. Functional magnetic resonance imaging (fMRI) experiments were carried out on eight individuals during either hearing or viewing words. The blood oxygen level dependant (BOLD) signal was taken as measure of neural activity. For each voxel, functional connectivity with all other brain voxels was determined by calculating Pearson correlation coefficients at two connectivity thresholds (r=0.35 and 0.65). Then, NT images were derived by counting the number of suprathreshold connections for each individual voxel. Calculations based on random networks indicate that statistically reliable NT images can be derived in individuals. With regard to group analysis, at r=0.35 NT images are similar though not identical with the first component of principal component analysis (PCA), displaying a widespread but not ubiquitous pattern of functionally connected cortical areas. At r=0.65, NT group images display functional connectivity confined to circumscribed cortical regions which reach beyond the corresponding primary sensory areas, their known associated areas and the default network. In conclusion, NT goes beyond the approach of correlating the BOLD signal with the external stimulus-presentation time course by computing linear functional connectivity between all brain voxels based on any BOLD time course. First results demonstrate that the NT approach is likely - on an individual base - to reveal novel cortical and subcortical connectivities involved in stimulus processing.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…