-
Int. J. Radiat. Oncol. Biol. Phys. · Aug 2012
Randomized Controlled Trial Comparative StudySkin-sparing helical tomotherapy vs 3D-conformal radiotherapy for adjuvant breast radiotherapy: in vivo skin dosimetry study.
- Lisa Capelle, Heather Warkentin, Marc Mackenzie, Kurian Joseph, Zsolt Gabos, Nadeem Pervez, Keith Tankel, Susan Chafe, John Amanie, Sunita Ghosh, Matthew Parliament, and Bassam Abdulkarim.
- Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta, Canada.
- Int. J. Radiat. Oncol. Biol. Phys. 2012 Aug 1; 83 (5): e583-90.
PurposeWe investigated whether treatment-planning system (TPS)-calculated dose accurately reflects skin dose received for patients receiving adjuvant breast radiotherapy (RT) with standard three-dimensional conformal RT (3D-CRT) or skin-sparing helical tomotherapy (HT).Methods And MaterialsFifty patients enrolled in a randomized controlled trial investigating acute skin toxicity from adjuvant breast RT with 3D-CRT compared to skin-sparing HT, where a 5-mm strip of ipsilateral breast skin was spared. Thermoluminescent dosimetry or optically stimulated luminescence measurements were made in multiple locations and were compared to TPS-calculated doses. Skin dosimetric parameters and acute skin toxicity were recorded in these patients.ResultsWith HT there was a significant correlation between calculated and measured dose in the medial and lateral ipsilateral breast (r = 0.67, P<.001; r = 0.44, P=.03, respectively) and the medial and central contralateral breast (r = 0.73, P<.001; r = 0.88, P<.001, respectively). With 3D-CRT there was a significant correlation in the medial and lateral ipsilateral breast (r = 0.45, P=.03; r = 0.68, P<.001, respectively); the medial and central contralateral breast (r = 0.62, P=.001; r = 0.86, P<.001, respectively); and the mid neck (r = 0.42, P=.04, respectively). On average, HT-calculated dose overestimated the measured dose by 14%; 3D-CRT underestimated the dose by 0.4%. There was a borderline association between highest measured skin dose and moist desquamation (P=.05). Skin-sparing HT had greater skin homogeneity (homogeneity index of 1.39 vs 1.65, respectively; P=.005) than 3D-CRT plans. HT plans had a lower skin(V50) (1.4% vs 5.9%, respectively; P=.001) but higher skin(V40) and skin(V30) (71.7% vs 64.0%, P=.02; and 99.0% vs 93.8%, P=.001, respectively) than 3D-CRT plans.ConclusionThe 3D-CRT TPS more accurately reflected skin dose than the HT TPS, which tended to overestimate dose received by 14% in patients receiving adjuvant breast RT.Copyright © 2012 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.