• J Hand Surg Am · Apr 2010

    Comparative Study

    Comparison between locking and non-locking plates for fixation of metacarpal fractures in an animal model.

    • Sabine Ochman, Stephanie Doht, Juergen Paletta, Martin Langer, Michael J Raschke, and Rainer H Meffert.
    • Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Muenster, Germany. ochman@uni-muenster.de
    • J Hand Surg Am. 2010 Apr 1; 35 (4): 597-603.

    PurposeThe use of locking plates increases the primary load to failure, thereby reducing the rate of implant-related failure. The good clinical and biomechanical results of locking plates in long bones might be applicable to treatment of metacarpal fractures. The purpose of this study was to determine strength and stiffness of locking plates in a metacarpal fracture model with mono- and bicortical screw fixation in comparison to non-locking plate mono- and bicortical screw fixation, with both types of plates placed at the dorsal side of the bone.MethodsFresh second metacarpals from domestic pigs (n=40) were randomized in 4 equal groups. Short, oblique, mid-shaft fractures were generated, using a standardized 3-point bending method. Fractures were plated with non-locking, titanium, 1-mm-thick monocortical (group 1, n=10) or bicortical (group 2, n =10) plates (Leibinger-Stryker; Stryker Corp, Freiburg, Germany). Newly designed locking titanium plates with the same width and thickness (Leibinger-Stryker) were used in the same manner for groups 3 (monocortical) and 4 (bicortical). The metacarpals were then tested to load to failure in a cantilever bending mode.ResultsBicortical, non-locking fixation (group 2, 359 +/- 90 N) had a higher load to failure than monocortical non-locking fixation (group 1, 250 +/- 56 N) in testing the maximum load to failure (p < .01). There was no significant difference in stiffness between group 1 (46 +/- 12 N/mm) and group 2 (56 +/- 21 N/mm). The difference in maximum load to failure between monocortical (group 3, 440 +/- 85N) and bicortical (group 4, 378 +/- 116 N) locking plate stabilization was not significant. Also, there was no significant difference in stiffness between monocortical (group 3, 83 +/- 35 N/mm) and bicortical locking plates (group 4, 70 +/- 31 N/mm). Comparing non-locking (group 1) and locking plates in a monocortical fixation technique (group 3) demonstrated significant differences in maximum load to failure (group 1, 250 +/- 56 N; group 3, 440 +/- 85 N) and stiffness (group 1, 46 +/- 12 N/mm; group 3, 83 +/- 35 N/mm). The stability of monocortical locking plates was stronger, although not statistically significant, than the non-locking bicortical plates (load to failure, 440 +/- 85 N vs 359 +/- 90 N; stiffness, 83 +/- 35 N/mm vs 56 +/- 21 N/mm).ConclusionsThe new generation of locking plates can be used to achieve a higher stability for fixation of metacarpal fractures. Monocortical, stable fixation can minimize flexor tendon interference and probably reduce bone and soft tissue trauma.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.