• Am. J. Physiol. Heart Circ. Physiol. · Apr 2012

    A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system.

    • Bryn A Martin, Philippe Reymond, Jan Novy, Olivier Balédent, and Nikolaos Stergiopulos.
    • Ecole Polytechnique Federale de Lausanne, School of Engineering, Interfaculty Institute of Bioengineering, Laboratory of Hemodynamics and Cardiovascular Technology, Switzerland.
    • Am. J. Physiol. Heart Circ. Physiol. 2012 Apr 1; 302 (7): H1492-509.

    AbstractCoupling of the cardiovascular and cerebrospinal fluid (CSF) system is considered to be important to understand the pathophysiology of cerebrovascular and craniospinal disease and intrathecal drug delivery. A coupled cardiovascular and CSF system model was designed to examine the relation of spinal cord (SC) blood flow (SCBF) and CSF pulsations along the spinal subarachnoid space (SSS). A one-dimensional (1-D) cardiovascular tree model was constructed including a simplified SC arterial network. Connection between the cardiovascular and CSF system was accomplished by a transfer function based on in vivo measurements of CSF and cerebral blood flow. A 1-D tube model of the SSS was constructed based on in vivo measurements in the literature. Pressure and flow throughout the cardiovascular and CSF system were determined for different values of craniospinal compliance. SCBF results indicated that the cervical, thoracic, and lumbar SC each had a signature waveform shape. The cerebral blood flow to CSF transfer function reproduced an in vivo-like CSF flow waveform. The 1-D tube model of the SSS resulted in a distribution of CSF pressure and flow and a wave speed that were similar to those in vivo. The SCBF to CSF pulse delay was found to vary a great degree along the spine depending on craniospinal compliance and vascular anatomy. The properties and anatomy of the SC arterial network and SSS were found to have an important impact on pressure and flow and perivascular fluid movement to the SC. Overall, the coupled model provides predictions about the flow and pressure environment in the SC and SSS. More detailed measurements are needed to fully validate the model.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.