• Shock · May 2009

    Variable effects of inhibiting iNOS and closing the vascular ATP-sensitive potassium channel (via its pore-forming and sulfonylurea receptor subunits) in endotoxic shock.

    • Alastair O'Brien, Raymond P Stidwill, Lucie H Clapp, and Mervyn Singer.
    • Department of Medicine, University College London, United Kingdom. a.o'brien@ucl.ac.uk
    • Shock. 2009 May 1; 31 (5): 535-41.

    AbstractExcess production of NO and activation of vascular ATP-sensitive potassium (K(ATP)) channels are implicated in the hypotension and vascular hyporeactivity associated with endotoxic shock. Using a fluid-resuscitated endotoxic rat model, we compared the cardiovascular effects of an iNOS inhibitor and two distinct inhibitors of the K(ATP) channel. Endotoxin (LPS) was administered to anesthetized, spontaneously breathing, fluid-resuscitated adult male Wistar rats, in which MAP, aortic and renal blood flow, and hepatic microvascular oxygenation were monitored continuously. At 120 min, the iNOS inhibitor, GW273629, and the K(ATP)-channel inhibitors, PNU-37883A and glyburide, were administered separately, and their effects on hemodynamics and oxygenation were examined. We found that GW273629 increased MAP over and above the pressor effect achieved in sham animals. Inhibiting K(ATP) channels via the pore-forming subunit (PNU-37883A and high-dose glyburide) produced significant pressor effects, whereas inhibiting the sulfonylurea receptor with low-dose glyburide was ineffective. No agent reversed the fall in aortic or renal blood flow, the fall in hepatic microvascular oxygenation, or the metabolic acidosis that occurred in LPS-treated animals. We conclude that inhibition of the K(ATP) channel via the pore-forming, but not the sulfonylurea receptor subunit, increases blood pressure in a short-term endotoxic model. However, this was not accompanied by any improvement in macrocirculatory or microcirculatory organ blood flow nor reversal of metabolic acidosis. It therefore remains uncertain whether the iNOS pathway or the K(ATP) channel represents a potential target for drug development in the treatment of endotoxic shock.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.