• Nursing research · Mar 2005

    Logistic regression and Bayesian networks to study outcomes using large data sets.

    • Sun-Mi Lee, Patricia Abbott, and Mary Johantgen.
    • College of Nursing, Catholic University of Korea, Seoul, Korea. leesunmi@catholic.ac.kr
    • Nurs Res. 2005 Mar 1; 54 (2): 133-8.

    BackgroundIn nursing research, the interest in using large health care databases to predict nursing sensitive outcomes is growing rapidly. Traditionally, one of the most frequently used methods is logistic regression (LR), which, although powerful and familiar, has several limitations when used in the analysis of large databases. As a result, innovative approaches are required.ApproachTo (a) introduce an innovative/alternative data analysis approach (Bayesian network), (b) discuss the constraints of LR and the complementary advantages of Bayesian networks (BNs) in working with large and multidimensional health care data, and (c) provide a fundamental understanding of the use of BNs in the nursing/health care domain.ResultsStudies have shown that BNs have several advantages over LR in analyzing complex and large data: (a) statistical assumptions, such as linearity and additivity, are relaxed; (b) handling of a larger number of predictors and identification of interactions among predictors is less complex; and (c) the discovery of structure, pattern, and knowledge, for example, of unknown, complex, and nonlinear relationships, in data is facilitated.ConclusionOutcome studies, such as those undertaken by nurse researchers, may benefit from the examination and use of innovative approaches such as BNs to the analysis of very large and complex health care data sets.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…