• Magn Reson Med · Mar 2019

    Background field removal for susceptibility mapping of human brain with large susceptibility variations.

    • Jinsheng Fang, Lijun Bao, Xu Li, van ZijlPeter C MPCMDepartment of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland., and Zhong Chen.
    • Department of Electronic Science, Xiamen University, Xiamen, China.
    • Magn Reson Med. 2019 Mar 1; 81 (3): 2025-2037.

    PurposeIn quantitative susceptibility mapping (QSM) of human brain, the background field induced by air-tissue interface varies significantly with respect to the rotation angle between the head and the static field, which may result in substantial error in the estimated magnetic susceptibility values. The goal of this study was to develop a strategy to better remove such orientation dependent background field.MethodsAn improved background field removal method is proposed based on the sophisticated harmonic artifact reduction for phase data using a region adaptive kernel (R-SHARP), named iRSHARP. It uses a spatially weighted spherical Gaussian kernel exploiting the amplitude, gradient, and wrap count of the phase map. The method was validated using both numerical simulations and in vivo human brain data at multiple head orientations. Performance was compared with the variable kernel (V-SHARP) and R-SHARP methods.ResultsThe proposed iRSHARP method showed improved background removal over R-SHARP while cutting the computational time in half. As compared to V-SHARP and R-SHARP, the iRSHARP generated local field and susceptibility maps showed fewer artifacts in regions of large susceptibility variations, and for the in vivo human brain, the susceptibilities of the deep gray matter nuclei were consistent with the in vivo gold-standard "Calculation of Susceptibility through Multiple Orientation Sampling" (COSMOS) values.ConclusioniRSHARP can remove the orientation dependent background field effectively. Using iRSHARP, the paranasal sinus regions can be preserved in the brain mask and the brain integrity was conserved, which may facilitate further data analysis and clinical application.© 2018 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…