• Academic radiology · Jan 2006

    A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images.

    • Weijie Chen, Maryellen L Giger, and Ulrich Bick.
    • University of Chicago, Radiology, 584 South Maryland, MC Chicago, IL , USA. weije@uchicago.edu
    • Acad Radiol. 2006 Jan 1; 13 (1): 63-72.

    Rationale And ObjectivesAccurate quantification of the shape and extent of breast tumors has a vital role in nearly all applications of breast magnetic resonance (MR) imaging (MRI). Specifically, tumor segmentation is a key component in the computerized assessment of likelihood of malignancy. However, manual delineation of lesions in four-dimensional MR images is labor intensive and subject to interobserver and intraobserver variations. We developed a computerized lesion segmentation method that has the advantage of being automatic, efficient, and objective.Materials And MethodsWe present a fuzzy c-means (FCM) clustering-based method for the segmentation of breast lesions in three dimensions from contrast-enhanced MR images. The proposed lesion segmentation algorithm consists of six consecutive stages: region of interest (ROI) selection by a human operator, lesion enhancement within the selected ROI, application of FCM on the enhanced ROI, binarization of the lesion membership map, connected-component labeling and object selection, and hole-filling on the selected object. We applied the algorithm to a clinical MR database consisting of 121 primary mass lesions. Manual segmentation of the lesions by an expert MR radiologist served as a reference in the evaluation of the computerized segmentation method. We also compared the proposed algorithm with a previously developed volume-growing (VG) method.ResultsFor the 121 mass lesions in our database, 97% of lesions were segmented correctly by means of the proposed FCM-based method at an overlap threshold of 0.4, whereas 84% of lesions were correctly segmented by means of the VG method.ConclusionOur proposed algorithm for breast-lesion segmentation in dynamic contrast-enhanced MRI was shown to be effective and efficient.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…