• Medical image analysis · Feb 2021

    Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer.

    • Simon M Thomas, James G Lefevre, Glenn Baxter, and Nicholas A Hamilton.
    • Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St Lucia, Australia; MyLab Pathology, 11 Hayling Street, Salisbury, Australia. Electronic address: simon.thomas@uq.edu.au.
    • Med Image Anal. 2021 Feb 1; 68: 101915.

    AbstractWe apply for the first-time interpretable deep learning methods simultaneously to the most common skin cancers (basal cell carcinoma, squamous cell carcinoma and intraepidermal carcinoma) in a histological setting. As these three cancer types constitute more than 90% of diagnoses, we demonstrate that the majority of dermatopathology work is amenable to automatic machine analysis. A major feature of this work is characterising the tissue by classifying it into 12 meaningful dermatological classes, including hair follicles, sweat glands as well as identifying the well-defined stratified layers of the skin. These provide highly interpretable outputs as the network is trained to represent the problem domain in the same way a pathologist would. While this enables a high accuracy of whole image classification (93.6-97.9%), by characterising the full context of the tissue we can also work towards performing routine pathologist tasks, for instance, orientating sections and automatically assessing and measuring surgical margins. This work seeks to inform ways in which future computer aided diagnosis systems could be applied usefully in a clinical setting with human interpretable outcomes.Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.