• JMIR mHealth and uHealth · Jul 2017

    Patterns of User Engagement With the Mobile App, Manage My Pain: Results of a Data Mining Investigation.

    • Quazi Abidur Rahman, Tahir Janmohamed, Meysam Pirbaglou, Paul Ritvo, Jane M Heffernan, Hance Clarke, and Joel Katz.
    • Centre for Disease Modelling, Department of Mathematics and Statistics, York University, Toronto, ON, Canada.
    • JMIR Mhealth Uhealth. 2017 Jul 12; 5 (7): e96.

    BackgroundPain is one of the most prevalent health-related concerns and is among the top 3 most common reasons for seeking medical help. Scientific publications of data collected from pain tracking and monitoring apps are important to help consumers and healthcare professionals select the right app for their use.ObjectiveThe main objectives of this paper were to (1) discover user engagement patterns of the pain management app, Manage My Pain, using data mining methods; and (2) identify the association between several attributes characterizing individual users and their levels of engagement.MethodsUser engagement was defined by 2 key features of the app: longevity (number of days between the first and last pain record) and number of records. Users were divided into 5 user engagement clusters employing the k-means clustering algorithm. Each cluster was characterized by 6 attributes: gender, age, number of pain conditions, number of medications, pain severity, and opioid use. Z tests and chi-square tests were used for analyzing categorical attributes. Effects of gender and cluster on numerical attributes were analyzed using 2-way analysis of variances (ANOVAs) followed up by pairwise comparisons using Tukey honest significant difference (HSD).ResultsThe clustering process produced 5 clusters representing different levels of user engagement. The proportion of males and females was significantly different in 4 of the 5 clusters (all P ≤.03). The proportion of males was higher than females in users with relatively high longevity. Mean ages of users in 2 clusters with high longevity were higher than users from other 3 clusters (all P <.001). Overall, males were significantly older than females (P <.001). Across clusters, females reported more pain conditions than males (all P <.001). Users from highly engaged clusters reported taking more medication than less engaged users (all P <.001). Females reported taking a greater number of medications than males (P =.04). In 4 of 5 clusters, the percentage of males taking an opioid was significantly greater (all P ≤.05) than that of females. The proportion of males with mild pain was significantly higher than that of females in 3 clusters (all P ≤.008).ConclusionsAlthough most users of the app reported being female, male users were more likely to be highly engaged in the app. Users in the most engaged clusters self-reported a higher number of pain conditions, a higher number of current medications, and a higher incidence of opioid usage. The high engagement by males in these clusters does not appear to be driven by pain severity which may, in part, be the case for females. Use of a mobile pain app may be relatively more attractive to highly-engaged males than highly-engaged females, and to those with relatively more complex chronic pain problems.©Quazi Abidur Rahman, Tahir Janmohamed, Meysam Pirbaglou, Paul Ritvo, Jane M Heffernan, Hance Clarke, Joel Katz. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 12.07.2017.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…