-
- Jonathan J Gamble, William P McKay, Barbara Ambros, Grant G Miller, Andrea Vasquez Camargo, Jonathan Norton, Jayden Cowan, Jean du Rand, Erick D McNair, Kris Milbrandt, Martin Gérard, and Maria Valentina Carrozzo.
- Department of Anesthesia, University of Saskatchewan, Saskatoon, SK, Canada. jonathan.gamble@saskhealthauthority.ca.
- Can J Anaesth. 2021 Nov 1; 68 (11): 1668-1682.
BackgroundShock is common in critically ill and injured patients. Survival during shock is highly dependent on rapid restoration of tissue oxygenation with therapeutic goals based on cardiac output (CO) optimization. Despite the clinical availability of numerous minimally invasive monitors of CO, limited supporting performance data are available.MethodsFollowing approval of the University of Saskatchewan Animal Research Ethics Board, we assessed the performance and trending ability of PiCCOplus™, FloTrac™, and CardioQ-ODM™ across a range of CO states in pigs. In addition, we assessed the ability of invasive mean arterial blood pressure (iMAP) to follow changes in CO using a periaortic transit-time flow probe as the reference method. Statistical analysis was performed with function-fail, bias and precision, percent error, and linear regression at all flow, low-flow (> 1 standard deviation [SD] below the mean), and high-flow (> 1 SD above the mean) CO conditions.ResultsWe made a total of 116,957 paired CO measurements. The non-invasive CO monitors often failed to provide a CO value (CardioQ-ODM: 40.6% failed measurements; 99% confidence interval [CI], 38.5 to 42.6; FloTrac: 9.6% failed measurements; 99% CI, 8.7 to 10.5; PiCCOplus: 4.7% failed measurements; 99% CI, 4.5 to 4.9; all comparisons, P < 0.001). The invasive mean arterial pressure provided zero failures, failing less often than any of the tested CO monitors (all comparisons, P < 0.001). The PiCCOplus was most interchangeable with the flow probe at all flow states: PiCCOplus (20% error; 99% CI, 19 to 22), CardioQ-ODM (25% error; 99% CI, 23 to 27), FloTrac (34% error; 99% CI, 32 to 38) (all comparisons, P < 0.001). At low-flow states, CardioQ-ODM (43% error; 99% CI, 32 to 63) and Flotrac (45% error; 99% CI, 33 to 70) had similar interchangeability (P = 0.07), both superior to PiCCOplus (48% error; 99% CI, 42 to 60) (P < 0.001). Regarding CO trending, the CardioQ-ODM (correlation coefficient, 0.82; 99% CI, 0.81 to 0.83) was statistically superior to other monitors including iMAP, but at low flows iMAP (correlation coefficient, 0.58; 99% CI, 0.58 to 0.60) was superior to all minimally invasive CO monitors (all comparisons P < 0.001).ConclusionsNone of the minimally invasive monitors of CO performed well at all tested flows. Invasive mean arterial blood pressure most closely tracked CO change at critical flow states.© 2021. Canadian Anesthesiologists' Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.