-
J. Neurosci. Methods · Nov 2019
Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes.
- Olfa Graa and Islem Rekik.
- BASIRA lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey; University of Sousse, ENISo, Sousse, Tunisia.
- J. Neurosci. Methods. 2019 Nov 1; 327: 108344.
BackgroundMulti-view data representation learning explores the relationship between the views and provides rich complementary information that can improve computer-aided diagnosis. Specifically, existing machine learning methods devised to automate neurological disorder diagnosis using brain data provided new insights into how a particular disorder such as autism spectrum disorder (ASD) alters the brain construct. However, the performance of machine learning methods highly depends on the size of the training samples from both classes. In a real-world clinical setting, such medical data is very expensive and challenging to collect, might (i) suffer from several limitations such as imbalanced classes and (ii) have non-heterogeneous distribution when derived from multi-view brain representations.New MethodTo the best of our knowledge, the problem of imbalanced and multi-view data classification remains unexplored in the field of network neuroscience. To fill this gap, we propose a Multi-View LEArning-based data Proliferator (MV-LEAP) that enables the classification of imbalanced multi-view representations. MV-LEAP comprises two key steps. First, a manifold learning-based proliferator, which enables to generate synthetic data for each view, is developed to handle imbalanced data. Second, a multi-view manifold data alignment leveraging tensor canonical correlation analysis is proposed to map all original and proliferated (i.e., synthesized) views into a shared subspace where their distributions are aligned for the target classification task.ResultsWe evaluated our method on imbalanced multi-view ASD vs. normal control (NC) connectomic datasets with imbalanced classes.ConclusionOverall, MV-LEAP achieved the best classification results in comparison with baseline data synthesis methods.Copyright © 2019 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.