• Sci. Total Environ. · Oct 2021

    Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century.

    • Vedaste Iyakaremye, Gang Zeng, Xiaoye Yang, Guwei Zhang, Irfan Ullah, Aimable Gahigi, Floribert Vuguziga, Temesgen Gebremariam Asfaw, and Brian Ayugi.
    • Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China; Rwanda Meteorology Agency, Nyarugenge KN 96 St, Kigali, Rwanda; African Institute for Mathematical Sciences Next Einstein Initiative (AIMS-NEI), KG590 St, Kigali, Rwanda.
    • Sci. Total Environ. 2021 Oct 10; 790: 148162.

    AbstractPrevious studies warned that heat extremes are likely to intensify and frequently occur in the future due to climate change. Apart from changing climate, the population's size and distribution contribute to the total changes in the population exposed to heat extremes. The present study uses the ensemble mean of global climate models from the Coupled Model Inter-comparison Project Phase six (CMIP6) and population projection to assess the future changes in high-temperature extremes and exposure to the population by the middle of this century (2041-2060) in Africa compared to the recent climate taken from 1991 to 2010. Two Shared Socioeconomic Pathways (SSPs), namely SSP2-4.5 and SSP5-8.5, are used. Changes in population exposure and its contributors are quantified at continental and for various sub-regions. The intensity of high-temperature extremes is anticipated to escalate between 0.25 to 1.8 °C and 0.6 to 4 °C under SSP2-4.5 and SSP5-8.5, respectively, with Sahara and West Southern Africa projected to warm faster than the rest of the regions. On average, warm days' frequency is also expected to upsurge under SSP2-4.5 (26-59%) and SSP5-8.5 (30-69%) relative to the recent climate. By the mid-21st century, continental population exposure is expected to upsurge by ~25% (28%) of the reference period under SSP2-4.5|SSP2 (SSP5-8.5|SSP5). The highest increase in exposure is expected in most parts of West Africa (WAF), followed by East Africa. The projected changes in continental exposure (~353.6 million person-days under SSP2-4.5|SSP2 and ~401.4 million person-days under SSP5-8.5|SSP5) are mainly due to the interaction effect. However, the climate's influence is more than the population, especially for WAF, South-East Africa and East Southern Africa. The study findings are vital for climate change adaptation.Copyright © 2021 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.