• Microvascular research · Nov 2011

    Comparative Study

    Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function.

    • Garry A Tew, Markos Klonizakis, Helen Crank, J David Briers, and Gary J Hodges.
    • Centre for Sport and Exercise Science, Sheffield Hallam University, A125 Collegiate Hall, Sheffield, S10 2BP, UK. g.tew@shu.ac.uk
    • Microvasc. Res. 2011 Nov 1; 82 (3): 326-32.

    ObjectiveTo compare the inter-day reproducibility of post-occlusive reactive hyperaemia (PORH) and sympathetic vasomotor reflexes assessed by single-point laser Doppler flowmetry (SP-LDF), integrating-probe LDF (IP-LDF) and laser speckle contrast imaging (LSCI), and the spatial variability of PORH assessed by IP-LDF and LSCI. We also evaluated the relationship between IP-LDF and LSCI perfusion values across a broad range of skin blood flows.MethodsEighteen healthy adults (50% male, age 27 ± 4 years) participated in this study. Using SP-LDF, IP-LDF and LSCI, indices of skin blood flow were measured on the forearm during PORH (1-, 5- and 10-min occlusions) and on the finger pad during inspiratory gasp and cold pressor tests. These tests were repeated 3-7 days later. Data were converted to cutaneous vascular conductance (CVC; laser Doppler flow/mean arterial pressure) and expressed as absolute and relative changes from pre-stimulus CVC (ΔCVC(ABS) and ΔCVC(REL), respectively), as well as normalised to peak CVC for the PORH tests. Reproducibility was expressed as within-subjects coefficients of variation (CV, in %) and intraclass correlation coefficients.ResultsThe reproducibility of PORH on the forearm was poorer when assessed with SP-LDF and IP-LDF compared to LSCI (e.g., CV for 5-min PORH ΔCVC(ABS)=35%, 27% and 19%, respectively), with no superior method of data expression. In contrast, the reproducibility of the inspiratory gasp and cold pressor test responses on the finger pad were better with SP-LDF and IP-LDF compared to LSCI (e.g., CV for inspiratory gasp ΔCVC(REL)=13%, 7% and 19%, respectively). The spatial variability of PORH responses was poorer with IP-LDF compared to LSCI (e.g., CV ranging 11-35% versus 3-16%, respectively). The association between simultaneous LSCI and IP-LDF perfusion values was non-linear.ConclusionThe reproducibility of cutaneous PORH was better when assessed with LSCI compared to SP-LDF and IP-LDF; probably due to measuring larger skin areas (lower inter-site variability). However, when measuring sympathetic vasomotor reflexes on the finger pad, reproducibility was better with SP-LDF and IP-LDF, perhaps due to the high sensitivity of LSCI to changes in skin blood flow at low levels.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.