• Brain Struct Funct · Mar 2018

    The mediating role of cortical thickness and gray matter volume on sleep slow-wave activity during adolescence.

    • Aimée Goldstone, Adrian R Willoughby, Massimiliano de Zambotti, Peter L Franzen, Dongjin Kwon, Kilian M Pohl, Adolf Pfefferbaum, Edith V Sullivan, Eva M Müller-Oehring, Devin E Prouty, Brant P Hasler, Duncan B Clark, Ian M Colrain, and Fiona C Baker.
    • Centre for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025, USA.
    • Brain Struct Funct. 2018 Mar 1; 223 (2): 669-685.

    AbstractDuring the course of adolescence, reductions occur in cortical thickness and gray matter (GM) volume, along with a 65% reduction in slow-wave (delta) activity during sleep (SWA) but empirical data linking these structural brain and functional sleep differences, is lacking. Here, we investigated specifically whether age-related differences in cortical thickness and GM volume and cortical thickness accounted for the typical age-related difference in slow-wave (delta) activity (SWA) during sleep. 132 healthy participants (age 12-21 years) from the National Consortium on Alcohol and NeuroDevelopment in Adolescence study were included in this cross-sectional analysis of baseline polysomnographic, electroencephalographic, and magnetic resonance imaging data. By applying mediation models, we identified a large, direct effect of age on SWA in adolescents, which explained 45% of the variance in ultra-SWA (0.3-1 Hz) and 52% of the variance in delta-SWA (1 to <4 Hz), where SWA was lower in older adolescents, as has been reported previously. In addition, we provide evidence that the structure of several, predominantly frontal, and parietal brain regions, partially mediated this direct age effect, models including measures of brain structure explained an additional 3-9% of the variance in ultra-SWA and 4-5% of the variance in delta-SWA, with no differences between sexes. Replacing age with pubertal status in models produced similar results. As reductions in GM volume and cortical thickness likely indicate synaptic pruning and myelination, these results suggest that diminished SWA in older, more mature adolescents may largely be driven by such processes within a number of frontal and parietal brain regions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…