• Magn Reson Med · Aug 2014

    Strategies for improved 3D small-tip fast recovery imaging.

    • Hao Sun, Jeffrey A Fessler, Douglas C Noll, and Jon-Fredrik Nielsen.
    • Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA.
    • Magn Reson Med. 2014 Aug 1; 72 (2): 389-98.

    PurposeSmall-tip fast recovery (STFR) imaging is a recently proposed steady-state sequence that has similar image contrast as balanced steady-state free precession but has the potential to simultaneously remove banding artifacts and transient fluctuation. STFR relies on a "tip-up" radiofrequency (RF) pulse tailored to the accumulated phase during the free precession (data acquisition) interval, designed to bring spins back to the longitudinal axis, thereby preserving transverse magnetization as longitudinal magnetization for the next pulse repetition time. We recently proposed an RF-spoiled STFR sequence suitable for thin slab imaging, however, in many applications, e.g., functional magnetic resonance imaging or isotropic-resolution structural imaging, three-dimensional (3D) steady-state imaging is desirable. Unfortunately, 3D STFR imaging is challenging due to the need for 3D tailored RF pulses. Here, we propose new strategies for improved 3D STFR imaging, based on (i) unspoiled imaging, and (ii) joint design of nonslice-selective tip-down/tip-up RF pulses.Theory And MethodsWe derive an analytic signal model for the proposed unspoiled STFR sequence, and propose two strategies for designing the 3D tailored tip-down/tip-up RF pulses. We validate the analytic results using phantom and in vivo imaging experiments.ResultsOur analytic model and imaging experiments demonstrate that the proposed unspoiled STFR sequence is less sensitive to tip-up excitation error compared to the corresponding spoiled sequence, and may, therefore, be an attractive candidate for 3D imaging. The proposed "joint" RF pulse design method, in which we formulate the tip-down/tip-up RF pulse design task as a magnitude least squares problem, produces modest improvement over a simpler "Separate" design approach. Using the proposed unspoiled sequence and joint RF pulse design, we demonstrate proof-of-principle 3D STFR brain images with balanced steady-state free precession-like signal properties but with reduced banding.ConclusionUsing the proposed unspoiled sequence and joint RF pulse design, STFR brain images in a 3D region of interest with balanced steady-state free precession-like signal properties but with reduced banding can be obtained.Copyright © 2013 Wiley Periodicals, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…