• J Am Med Inform Assoc · Sep 2013

    Comparative Study

    Using rule-based natural language processing to improve disease normalization in biomedical text.

    • Ning Kang, Bharat Singh, Zubair Afzal, Erik M van Mulligen, and Jan A Kors.
    • Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands.
    • J Am Med Inform Assoc. 2013 Sep 1; 20 (5): 876-81.

    Background And ObjectiveIn order for computers to extract useful information from unstructured text, a concept normalization system is needed to link relevant concepts in a text to sources that contain further information about the concept. Popular concept normalization tools in the biomedical field are dictionary-based. In this study we investigate the usefulness of natural language processing (NLP) as an adjunct to dictionary-based concept normalization.MethodsWe compared the performance of two biomedical concept normalization systems, MetaMap and Peregrine, on the Arizona Disease Corpus, with and without the use of a rule-based NLP module. Performance was assessed for exact and inexact boundary matching of the system annotations with those of the gold standard and for concept identifier matching.ResultsWithout the NLP module, MetaMap and Peregrine attained F-scores of 61.0% and 63.9%, respectively, for exact boundary matching, and 55.1% and 56.9% for concept identifier matching. With the aid of the NLP module, the F-scores of MetaMap and Peregrine improved to 73.3% and 78.0% for boundary matching, and to 66.2% and 69.8% for concept identifier matching. For inexact boundary matching, performances further increased to 85.5% and 85.4%, and to 73.6% and 73.3% for concept identifier matching.ConclusionsWe have shown the added value of NLP for the recognition and normalization of diseases with MetaMap and Peregrine. The NLP module is general and can be applied in combination with any concept normalization system. Whether its use for concept types other than disease is equally advantageous remains to be investigated.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.