• J Cardiovasc Magn Reson · Feb 2015

    Comparative Study

    T2 mapping of the heart with a double-inversion radial fast spin-echo method with indirect echo compensation.

    • Tomoe Hagio, Chuan Huang, Aiden Abidov, Jaspreet Singh, Bujji Ainapurapu, Scott Squire, Denise Bruck, and Maria I Altbach.
    • Biomedical Engineering Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA. tbarr@email.arizona.edu.
    • J Cardiovasc Magn Reson. 2015 Feb 25; 17: 24.

    BackgroundThe abnormal signal intensity in cardiac T2-weighted images is associated with various pathologies including myocardial edema. However, the assessment of pathologies based on signal intensity is affected by the acquisition parameters and the sensitivities of the receiver coils. T2 mapping has been proposed to overcome limitations of T2-weighted imaging, but most methods are limited in spatial and/or temporal resolution. Here we present and evaluate a double inversion recovery radial fast spin-echo (DIR-RADFSE) technique that yields data with high spatiotemporal resolution for cardiac T2 mapping.MethodsDIR-RADFSE data were collected at 1.5 T on phantoms and subjects with echo train length (ETL) = 16, receiver bandwidth (BW) = ±32 kHz, TR = 1RR, matrix size = 256 × 256. Since only 16 views per echo time (TE) are collected, two algorithms designed to reconstruct highly undersampled radial data were used to generate images for 16 time points: the Echo-Sharing (ES) and the CUrve Reconstruction via pca-based Linearization with Indirect Echo compensation (CURLIE) algorithm. T2 maps were generated via least-squares fitting or the Slice-resolved Extended Phase Graph (SEPG) model fitting. The CURLIE-SEPG algorithm accounts for the effect of indirect echoes. The algorithms were compared based on reproducibility, using Bland-Altman analysis on data from 7 healthy volunteers, and T2 accuracy (against a single-echo spin-echo technique) using phantoms.ResultsBoth reconstruction algorithms generated in vivo images with high spatiotemporal resolution and showed good reproducibility. Mean T2 difference between repeated measures and the coefficient of repeatability were 0.58 ms and 2.97 for ES and 0.09 ms and 4.85 for CURLIE-SEPG. In vivo T2 estimates from ES were higher than those from CURLIE-SEPG. In phantoms, CURLIE-SEPG yielded more accurate T2s compared to reference values (error was 7.5-13.9% for ES and 0.6-2.1% for CURLIE-SEPG), consistent with the fact that CURLIE-SEPG compensates for the effects of indirect echoes. The potential of T2 mapping with CURLIE-SEPG is demonstrated in two subjects with known heart disease. Elevated T2 values were observed in areas of suspected pathology.ConclusionsDIR-RADFSE yielded TE images with high spatiotemporal resolution. Two algorithms for generating T2 maps from highly undersampled data were evaluated in terms of accuracy and reproducibility. Results showed that CURLIE-SEPG yields T2 estimates that are reproducible and more accurate than ES.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.