• Critical care medicine · Dec 2021

    Automated Assessment of Brain CT After Cardiac Arrest-An Observational Derivation/Validation Cohort Study.

    • Martin Kenda, Michael Scheel, André Kemmling, Noelle Aalberts, Christopher Guettler, Kaspar J Streitberger, Christian Storm, Christoph J Ploner, and Christoph Leithner.
    • Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
    • Crit. Care Med. 2021 Dec 1; 49 (12): e1212e1222e1212-e1222.

    ObjectivesPrognostication of outcome is an essential step in defining therapeutic goals after cardiac arrest. Gray-white-matter ratio obtained from brain CT can predict poor outcome. However, manual placement of regions of interest is a potential source of error and interrater variability. Our objective was to assess the performance of poor outcome prediction by automated quantification of changes in brain CTs after cardiac arrest.DesignObservational, derivation/validation cohort study design. Outcome was determined using the Cerebral Performance Category upon hospital discharge. Poor outcome was defined as death or unresponsive wakefulness syndrome/coma. CTs were automatically decomposed using coregistration with a brain atlas.SettingICUs at a large, academic hospital with circulatory arrest center.PatientsWe identified 433 cardiac arrest patients from a large previously established database with brain CTs within 10 days after cardiac arrest.InterventionsNone.Measurements And Main ResultsFive hundred sixteen brain CTs were evaluated (derivation cohort n = 309, validation cohort n = 207). Patients with poor outcome had significantly lower radiodensities in gray matter regions. Automated GWR_si (putamen/posterior limb of internal capsule) was performed with an area under the curve of 0.86 (95%-CI: 0.80-0.93) for CTs taken later than 24 hours after cardiac arrest (similar performance in the validation cohort). Poor outcome (Cerebral Performance Category 4-5) was predicted with a specificity of 100% (95% CI, 87-100%, derivation; 88-100%, validation) at a threshold of less than 1.10 and a sensitivity of 49% (95% CI, 36-58%, derivation) and 38% (95% CI, 27-50%, validation) for CTs later than 24 hours after cardiac arrest. Sensitivity and area under the curve were lower for CTs performed within 24 hours after cardiac arrest.ConclusionsAutomated gray-white-matter ratio from brain CT is a promising tool for prediction of poor neurologic outcome after cardiac arrest with high specificity and low-to-moderate sensitivity. Prediction by gray-white-matter ratio at the basal ganglia level performed best. Sensitivity increased considerably for CTs performed later than 24 hours after cardiac arrest.Copyright © 2021 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.