• Gastroenterology · Oct 2017

    MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.

    • Sander P J Joosten, Jurrit Zeilstra, Harmen van Andel, R Clinton Mijnals, Joost Zaunbrecher, Annet A M Duivenvoorden, Marc van de Wetering, Hans Clevers, Marcel Spaargaren, and Steven T Pals.
    • Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
    • Gastroenterology. 2017 Oct 1; 153 (4): 1040-1053.e4.

    Background & AimsResistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice.MethodsWe established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (AhCre/Metfl/fl/LacZ) or ISC-specific disruption of MET (Lgr5Creert2/Metfl/fl/LacZ) and control mice (AhCre/Met+/+/LacZ, Lgr5Creert2/Met+/+/LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5Creert2/Metfl/fl/Apcfl/fl and Lgr5Creert2/Met+/+/Apcfl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in AhCre/Metfl/fl/Apcfl/+ mice compared with AhCre/Met+/+/Apcfl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44+/+, Cd44-/-, Cd44s/s, or Cd44v4-10/v4-10 mice).ResultsCrypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in AhCre/Metfl/fl/LacZ mice. Lgr5Creert2/Metfl/fl/LacZ mice had impaired regeneration of MET-deficient ISCs. Adenoma organoids stimulated with EGF or HGF expanded to almost twice the size of nonstimulated organoids. MET-deficient adenoma organoids did not respond to HGF stimulation, but did respond to EGF. ISC-specific disruption of Met (Lgr5Creert2/Metfl/fl/Apcfl/fl mice) caused a twofold increase in apoptosis in microadenomas, resulting in an approximately 50% reduction of microadenoma numbers and significantly reduced average adenoma size. Total epithelial disruption of Met (AhCre/Metfl/fl/Apcfl/+ mice) resulted in an approximate 50% reduction in (micro)adenoma numbers. Intestinal crypts from Cd44-/- mice did not expand to the same extent as crypts from Cd44+/+ mice on stimulation with HGF, but had the same response to EGF. The negative effect on HGF-mediated growth was overcome by expression of CD44v4-10, but not by CD44s. Similarly, HGF-mediated expansion of adenoma organoids required CD44v4-10.ConclusionsIn studies of intestinal organoid cultures and mice with inducible deletion of MET, we found HGF receptor signaling to regulate intestinal homeostasis and regeneration, as well as adenoma formation. These activities of MET are promoted by the stem cell CD44 isoform CD44v4-10. Our findings provide rationale for targeting signaling via MET and CD44 during anti-EGF receptor therapy of patients with colorectal cancer or in patients resistant to EGF receptor inhibitors.Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.