• Curr Treat Option Ne · Dec 2020

    Red Blood Cell Transfusion and Transfusion Alternatives in Traumatic Brain Injury.

    • Andreas H Kramer and Le RouxPeterP.
    • Department of Critical Care Medicine & Clinical Neurosciences, University of Calgary, Ground Floor, McCaig Tower, 3134 Hospital Dr NW, Calgary, AB, T2N 2T9, Canada.
    • Curr Treat Option Ne. 2020 Dec 4; 14 (2): 150-163.

    AbstractOPINION STATEMENT: Anemia develops in about 50% of patients hospitalized with traumatic brain injury (TBI) and is recognized as a cause of secondary brain injury. This review examines the effects of anemia and transfusion on TBI patients through a literature search to identify original research on anemia and transfusion in TBI, the effects of transfusion on brain physiology, and the role of erythropoietin or hemoglobin-based blood substitutes (HBBSs). However, the amount of high-quality, prospective data available to help make decisions about when TBI patients should be transfused is very small. Randomized transfusion trials have involved far too few TBI patients to reach definitive conclusions. Thus, it is hardly surprising that there is widespread practice variation. In our opinion, a hemoglobin transfusion threshold of 7 g/dL cannot yet be considered safe for TBI patients admitted to hospital, and in particular to the ICU, as it is for other critically ill patients. Red blood cell transfusions often have immediate, seemingly beneficial effects on cerebral physiology, but the magnitude of this effect may depend in part upon how long the cells have been stored before administration. In light of existing physiological data, we generally aim to keep hemoglobin concentrations greater than 9 g/dL during the first several days after TBI. In part, the decision is based on the patient's risk of or development of secondary ischemia or brain injury. An increasing number of centers use multimodal neurologic monitoring, which may help to individualize transfusion goals based on the degree of cerebral hypoxia or metabolic distress. When available, brain tissue oxygen tension values less than 15-20 mm Hg or a lactate:pyruvate ratio greater than 30-40 would influence us to use more aggressive hemoglobin correction (e.g., a transfusion threshold of 10 g/dL). Clinicians can attempt to reduce transfusion requirements by limiting phlebotomy, minimizing hemodilution, and providing appropriate prophylaxis against gastrointestinal hemorrhage. Administration of exogenous erythropoietin may have a small impact in further reducing the need for transfusion, but it also may increase complications, most notably deep venous thrombosis. Erythropoietin is currently of great interest as a potential neuroprotective agent, but until it is adequately evaluated in randomized controlled trials, it should not be used routinely for this purpose. HBBSs are also of interest, but existing preparations have not been shown to be beneficial-or even safe-in the context of TBI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…