• Neurosurgery · Oct 2021

    Machine Assist for Pediatric Posterior Fossa Tumor Diagnosis: A Multinational Study.

    • Michael Zhang, Samuel W Wong, Jason N Wright, Sebastian Toescu, Maryam Mohammadzadeh, Michelle Han, Seth Lummus, Matthias W Wagner, Derek Yecies, Hollie Lai, Azam Eghbal, Alireza Radmanesh, Jordan Nemelka, Stephen Harward, Michael Malinzak, Suzanne Laughlin, Sebastien Perreault, Kristina R M Braun, Arastoo Vossough, Tina Poussaint, Robert Goetti, Birgit Ertl-Wagner, Chang Y Ho, Ozgur Oztekin, Vijay Ramaswamy, Kshitij Mankad, Nicholas A Vitanza, Samuel H Cheshier, Mourad Said, Kristian Aquilina, Eric Thompson, Alok Jaju, Gerald A Grant, Robert M Lober, and Kristen W Yeom.
    • Department of Neurosurgery, Stanford Hospital and Clinics, Stanford, California, USA.
    • Neurosurgery. 2021 Oct 13; 89 (5): 892-900.

    BackgroundClinicians and machine classifiers reliably diagnose pilocytic astrocytoma (PA) on magnetic resonance imaging (MRI) but less accurately distinguish medulloblastoma (MB) from ependymoma (EP). One strategy is to first rule out the most identifiable diagnosis.ObjectiveTo hypothesize a sequential machine-learning classifier could improve diagnostic performance by mimicking a clinician's strategy of excluding PA before distinguishing MB from EP.MethodsWe extracted 1800 total Image Biomarker Standardization Initiative (IBSI)-based features from T2- and gadolinium-enhanced T1-weighted images in a multinational cohort of 274 MB, 156 PA, and 97 EP. We designed a 2-step sequential classifier - first ruling out PA, and next distinguishing MB from EP. For each step, we selected the best performing model from 6-candidate classifier using a reduced feature set, and measured performance on a holdout test set with the microaveraged F1 score.ResultsOptimal diagnostic performance was achieved using 2 decision steps, each with its own distinct imaging features and classifier method. A 3-way logistic regression classifier first distinguished PA from non-PA, with T2 uniformity and T1 contrast as the most relevant IBSI features (F1 score 0.8809). A 2-way neural net classifier next distinguished MB from EP, with T2 sphericity and T1 flatness as most relevant (F1 score 0.9189). The combined, sequential classifier was with F1 score 0.9179.ConclusionAn MRI-based sequential machine-learning classifiers offer high-performance prediction of pediatric posterior fossa tumors across a large, multinational cohort. Optimization of this model with demographic, clinical, imaging, and molecular predictors could provide significant advantages for family counseling and surgical planning.© Congress of Neurological Surgeons 2021.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…