• The Lancet. Public health · Jan 2021

    Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey.

    • Koen B Pouwels, Thomas House, Emma Pritchard, Julie V Robotham, Paul J Birrell, Andrew Gelman, Karina-Doris Vihta, Nikola Bowers, Ian Boreham, Heledd Thomas, James Lewis, Iain Bell, John I Bell, John N Newton, Jeremy Farrar, Ian Diamond, Pete Benton, Ann Sarah Walker, and COVID-19 Infection Survey Team.
    • Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK; The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, University of Oxford, Oxford, UK. Electronic address: koen.pouwels@ndph.ox.ac.uk.
    • Lancet Public Health. 2021 Jan 1; 6 (1): e30-e38.

    BackgroundDecisions about the continued need for control measures to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on accurate and up-to-date information about the number of people testing positive for SARS-CoV-2 and risk factors for testing positive. Existing surveillance systems are generally not based on population samples and are not longitudinal in design.MethodsSamples were collected from individuals aged 2 years and older living in private households in England that were randomly selected from address lists and previous Office for National Statistics surveys in repeated cross-sectional household surveys with additional serial sampling and longitudinal follow-up. Participants completed a questionnaire and did nose and throat self-swabs. The percentage of individuals testing positive for SARS-CoV-2 RNA was estimated over time by use of dynamic multilevel regression and poststratification, to account for potential residual non-representativeness. Potential changes in risk factors for testing positive over time were also assessed. The study is registered with the ISRCTN Registry, ISRCTN21086382.FindingsBetween April 26 and Nov 1, 2020, results were available from 1 191 170 samples from 280 327 individuals; 5231 samples were positive overall, from 3923 individuals. The percentage of people testing positive for SARS-CoV-2 changed substantially over time, with an initial decrease between April 26 and June 28, 2020, from 0·40% (95% credible interval 0·29-0·54) to 0·06% (0·04-0·07), followed by low levels during July and August, 2020, before substantial increases at the end of August, 2020, with percentages testing positive above 1% from the end of October, 2020. Having a patient-facing role and working outside your home were important risk factors for testing positive for SARS-CoV-2 at the end of the first wave (April 26 to June 28, 2020), but not in the second wave (from the end of August to Nov 1, 2020). Age (young adults, particularly those aged 17-24 years) was an important initial driver of increased positivity rates in the second wave. For example, the estimated percentage of individuals testing positive was more than six times higher in those aged 17-24 years than in those aged 70 years or older at the end of September, 2020. A substantial proportion of infections were in individuals not reporting symptoms around their positive test (45-68%, dependent on calendar time.InterpretationImportant risk factors for testing positive for SARS-CoV-2 varied substantially between the part of the first wave that was captured by the study (April to June, 2020) and the first part of the second wave of increased positivity rates (end of August to Nov 1, 2020), and a substantial proportion of infections were in individuals not reporting symptoms, indicating that continued monitoring for SARS-CoV-2 in the community will be important for managing the COVID-19 pandemic moving forwards.FundingDepartment of Health and Social Care.Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.