• Int J Gen Med · Jan 2021

    Prediction Models for AKI in ICU: A Comparative Study.

    • Qing Qian, Jinming Wu, Jiayang Wang, Haixia Sun, and Lei Yang.
    • Hangzhou Normal University, Hangzhou, People's Republic of China.
    • Int J Gen Med. 2021 Jan 1; 14: 623-632.

    PurposeTo assess the performance of models for early prediction of acute kidney injury (AKI) in the Intensive Care Unit (ICU) setting.Patients And MethodsData were collected from the Medical Information Mart for Intensive Care (MIMIC)-III database for all patients aged ≥18 years who had their serum creatinine (SCr) level measured for 72 h following ICU admission. Those with existing conditions of kidney disease upon ICU admission were excluded from our analyses. Seventeen predictor variables comprising patient demographics and physiological indicators were selected on the basis of the Kidney Disease Improving Global Outcomes (KDIGO) and medical literature. Six models from three types of methods were tested: Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Decision Machine (LightGBM), and Convolutional Neural Network (CNN). The area under receiver operating characteristic curve (AUC), accuracy, precision, recall and F-measure (F1) were calculated for each model to evaluate performance.ResultsWe extracted the ICU records of 17,205 patients from MIMIC-III dataset. LightGBM had the best performance, with all evaluation indicators achieving the highest value (average AUC = 0.905, F1 = 0.897, recall = 0.836). XGBoost had the second best performance and LR, RF, SVM performed similarly (P = 0.082, 0.158 and 0.710, respectively) on AUC. The CNN model achieved the lowest score for accuracy, precision, F1 and AUC. SVM and LR had relatively low recall compared with that of the other models. The SCr level had the most significant effect on the early prediction of AKI onset in LR, RF, SVM and LightGBM.ConclusionLightGBM demonstrated the best capability for predicting AKI in the first 72 h of ICU admission. LightGBM and XGBoost showed great potential for clinical application owing to their high recall value. This study can provide references for artificial intelligence-powered clinical decision support systems for AKI early prediction in the ICU setting.© 2021 Qian et al.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…