• Ann Transl Med · May 2021

    Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study.

    • Bingsheng Huang, Dong Liang, Rushi Zou, Xiaxia Yu, Guo Dan, Haofan Huang, Heng Liu, and Yong Liu.
    • Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
    • Ann Transl Med. 2021 May 1; 9 (9): 794.

    BackgroundTraditional scoring systems for patients' outcome prediction in intensive care units such as Oxygenation Saturation Index (OSI) and Oxygenation Index (OI) may not reliably predict the clinical prognosis of patients with acute respiratory distress syndrome (ARDS). Thus, none of them have been widely accepted for mortality prediction in ARDS. This study aimed to develop and validate a mortality prediction method for patients with ARDS based on machine learning using the Medical Information Mart for Intensive Care (MIMIC-III) and Telehealth Intensive Care Unit (eICU) Collaborative Research Database (eICU-CRD) databases.MethodsPatients with ARDS were selected based on the Berlin definition in MIMIC-III and eICU-CRD databases. The APPS score (using age, PaO2/FiO2, and plateau pressure), Simplified Acute Physiology Score II (SAPS-II), Sepsis-related Organ Failure Assessment (SOFA), OSI, and OI were calculated. With MIMIC-III data, a mortality prediction model was built based on the random forest (RF) algorithm, and the performance was compared to those of existing scoring systems based on logistic regression. The performance of the proposed RF method was also validated with the combined MIMIC-III and eICU-CRD data. The performance of mortality prediction was evaluated by using the area under the receiver operating characteristics curve (AUROC) and performing calibration using the Hosmer-Lemeshow test.ResultsWith the MIMIC-III dataset (308 patients, for comparisons with the existing scoring systems), the RF model predicted the in-hospital mortality, 30-day mortality, and 1-year mortality with an AUROC of 0.891, 0.883, and 0.892, respectively, which were significantly higher than those of the SAPS-II, APPS, OSI, and OI (all P<0.001). In the multi-source validation (the combined dataset of 2,235 patients in MIMIC-III and 331 patients in eICU-CRD), the RF model achieved an AUROC of 0.905 and 0.736 for predicting in-hospital mortality for the MIMIC-III and eICU-CRD datasets, respectively. The calibration plots suggested good fits for our RF model and these scoring systems for predicting mortality. The platelet count and lactate level were the strongest predictive variables for predicting in-hospital mortality.ConclusionsCompared to the existing scoring systems, machine learning significantly improved performance for predicting ARDS mortality. Validation with multi-source datasets showed a relatively robust generalisation ability of our prediction model.2021 Annals of Translational Medicine. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…