-
Microvascular research · May 2015
The beneficial effects of acute hypercapnia on microcirculatory oxygenation in an animal model of sepsis are independent of K(+)ATP channels.
- Christopher Beck, Franziska Barthel, Anna-Maria Hahn, Christian Vollmer, Anna Herminghaus, Sabrina Schäfer, Inge Bauer, and Olaf Picker.
- Department of Anaesthesiology, University Hospital Duesseldorf, Germany.
- Microvasc. Res. 2015 May 1; 99: 78-85.
BackgroundAcute hypercapnia maintains the microcirculatory oxygenation of the splanchnic region during sepsis. The first aim of this study was to characterize the role of K(+)ATP channels on the microcirculatory flow and oxygenation during acute moderate hypercapnia. The second aim was to investigate whether a short period of hypercapnia induces detrimental effects in an otherwise undamaged rodent lung.MethodsExperiments were performed on 60 male Wistar rats. A moderate polymicrobial sepsis was induced by colon ascendens stent peritonitis (CASP) surgery. 24h after induction of sepsis volume-controlled and pressure-limited ventilation was established for 120 min, with either normocapnic (pCO2 35-45 mmHg) or moderate hypercapnic ventilation targets (pCO2 65-75 mmHg) and with or without non-selective K(+)ATP channel blockade with glibenclamide. Microcirculatory blood flow of the colonic wall as well as oxygen delivery and consumption were assessed with tissue laser Doppler and reflectance spectrophotometry. Hemodynamic variables were recorded and plasma cytokine levels and myeloperoxidase levels of the lungs were analyzed.ResultsIn septic animals microcirculatory oxygenation deteriorated progressively with normocapnia (-11.7 ± 11.8%) but was maintained (-2.9 ± 5.6%) with hypercapnia. This effect was associated with an increased microcirculatory oxygen consumption in septic animals with normocapnia (+25.7 ± 37.1%) that was decreased in the hypercapnia groups (-7.2 ± 28.1%). The effect of hypercapnia in septic animals was not altered by additional K(+)ATP channel blockade (-5.7 ± 32.7%). Hypercapnia neither induced an inflammatory response in lungs nor altered the systemic cytokine response.ConclusionsThe observed beneficial effect of hypercapnia on microvascular oxygenation of the colon in sepsis does not seem to be mediated via K(+)ATP channels.Copyright © 2015 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.