• Eur. J. Nucl. Med. Mol. Imaging · Oct 2020

    Multicenter Study

    End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT.

    • Jiangdian Song, Hongmei Wang, Yuchan Liu, Wenqing Wu, Gang Dai, Zongshan Wu, Puhe Zhu, Wei Zhang, Kristen W Yeom, and Kexue Deng.
    • College of Medical Informatics, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China.
    • Eur. J. Nucl. Med. Mol. Imaging. 2020 Oct 1; 47 (11): 2516-2524.

    PurposeIn the absence of a virus nucleic acid real-time reverse transcriptase-polymerase chain reaction (RT-PCR) test and experienced radiologists, clinical diagnosis is challenging for viral pneumonia with clinical symptoms and CT signs similar to that of coronavirus disease 2019 (COVID-19). We developed an end-to-end automatic differentiation method based on CT images to identify COVID-19 pneumonia patients in real time.MethodsFrom January 18 to February 23, 2020, we conducted a retrospective study and enrolled 201 patients from two hospitals in China who underwent chest CT and RT-PCR tests, of which 98 patients tested positive for COVID-19 (118 males and 83 females, with an average age of 42 years). Patient CT images from one hospital were divided among training, validation and test datasets with an 80%:10%:10% ratio. An end-to-end representation learning method using a large-scale bi-directional generative adversarial network (BigBiGAN) architecture was designed to extract semantic features from the CT images. The semantic feature matrix was input for linear classifier construction. Patients from the other hospital were used for external validation. Differentiation accuracy was evaluated using a receiver operating characteristic curve.ResultsBased on the 120-dimensional semantic features extracted by BigBiGAN from each image, the linear classifier results indicated that the area under the curve (AUC) in the training, validation and test datasets were 0.979, 0.968 and 0.972, respectively, with an average sensitivity of 92% and specificity of 91%. The AUC for external validation was 0.850, with a sensitivity of 80% and specificity of 75%. Publicly available architecture and computing resources were used throughout the study to ensure reproducibility.ConclusionThis study provides an efficient recognition method for coronavirus disease 2019 pneumonia, using an end-to-end design to implement targeted and effective isolation for the containment of this communicable disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.