• Journal of cell science · May 1996

    SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation.

    • S Gobron, H Monnerie, R Meiniel, I Creveaux, W Lehmann, D Lamalle, B Dastugue, and A Meiniel.
    • Laboratoire de Biochimie Médicale, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine, Clermont-Ferrand, France.
    • J. Cell. Sci. 1996 May 1; 109 ( Pt 5): 1053-61.

    AbstractA number of cues are known to influence neuronal development including growth factors, cell-adhesion molecules, components of the extracellular matrix and guidance molecules. In this study, we present molecular and functional evidence that SCO-spondin, a novel relative of the thrombospondin family, could also be involved in neuronal development by modulating cell aggregative mechanisms. SCO-spondin corresponds to glycoproteins secreted by the subcommissural organ (SCO), an ependymal differentiation of the vertebrate brain located at the entrance to the Sylvian aqueduct. A cDNA clone of 2.6 kb, isolated from a bovine SCO cDNA library, was shown to be specifically and highly expressed in the bovine SCO by in situ hybridization and was subsequently sequenced. Analysis of the deduced amino acid sequence reveals the presence of four conserved domains known as thrombospondin (TSP) type I repeats. To account for the homology with thrombospondins and F-spondin, this secreted glycoprotein was called SCO-spondin. Two potent binding sites to glycosaminoglycan (BBXB) and to cytokine (TXWSXWS) are also found in the TSP type I repeats. The deduced amino acid sequence exhibits three other conserved domains called low density lipoprotein (LDL) receptor type A repeats. The possibility of SCO-spondin involvement in neuronal development as a component of the extracellular matrix is discussed regarding these molecular features. The idea of a modulation of cell-cell and/or cell-matrix interaction is further supported by the anti-aggregative effect observed on cultured neuronal cells of material solubilized from Reissner's fiber. That Reissner's fiber, the condensed secretory product of the SCO present along the whole spinal cord can be a potent morphogenetical structure is an important concept for the analysis of the molecular mechanisms leading to spinal cord differentiation.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…