• Am. J. Respir. Crit. Care Med. · Dec 2021

    Randomized Controlled Trial

    A Semi-Mechanistic Model of the Bactericidal Activity of High-Dose Isoniazid Against Multi-Drug-Resistant Tuberculosis: Results from a Randomized Clinical Trial.

    • Kamunkhwala Gausi, Elisa H Ignatius, Xin Sun, Soyeon Kim, Laura Moran, Lubbe Wiesner, Florian von Groote-Bidlingmaier, Richard Hafner, Kathleen Donahue, Naadira Vanker, Susan L Rosenkranz, Susan Swindells, Andreas H Diacon, Eric L Nuermberger, Kelly E Dooley, and Paolo Denti.
    • Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
    • Am. J. Respir. Crit. Care Med. 2021 Dec 1; 204 (11): 132713351327-1335.

    AbstractRationale: There is accumulating evidence that higher-than-standard doses of isoniazid are effective against low-to-intermediate-level isoniazid-resistant strains of Mycobacterium tuberculosis, but the optimal dose remains unknown. Objectives: To characterize the association between isoniazid pharmacokinetics (standard or high dose) and early bactericidal activity against M. tuberculosis (drug sensitive and inhA mutated) and N-acetyltransferase 2 status. Methods: ACTG (AIDS Clinical Trial Group) A5312/INHindsight is a 7-day early bactericidal activity study with isoniazid at a normal dose (5 mg/kg) for patients with drug-sensitive bacteria and 5, 10, and 15 mg/kg doses for patients with inhA mutants. Participants with pulmonary tuberculosis received daily isoniazid monotherapy and collected sputum daily. Colony-forming units (cfu) on solid culture and time to positivity in liquid culture were jointly analyzed using nonlinear mixed-effects modeling. Measurements and Main Results: Fifty-nine adults were included in this analysis. A decline in sputum cfu was described by a one-compartment model, whereas an exponential bacterial growth model was used to interpret time-to-positivity data. The model found that bacterial kill is modulated by isoniazid concentration using an effect compartment and a sigmoidal Emax relationship (a model linking the drug concentration to the observed effect). The model predicted lower potency but similar maximum kill of isoniazid against inhA-mutated compared with drug-sensitive isolates. Based on simulations from the pharmacokinetics-pharmacodynamics model, to achieve a drop in bacterial load comparable to 5 mg/kg against drug-sensitive tuberculosis, 10- and 15-mg/kg doses are necessary against inhA-mutated isolates in slow and intermediate N-acetyltransferase 2 acetylators, respectively. Fast acetylators underperformed even at 15 mg/kg. Conclusions: Dosing of isoniazid based on N-acetyltransferase 2 acetylator status may help patients attain effective exposures against inhA-mutated isolates. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.