-
Environment international · Feb 2018
Urinary polycyclic aromatic hydrocarbon metabolites, Club cell secretory protein and lung function.
- Yun Zhou, Ge Mu, Yuewei Liu, Lili Xiao, Jixuan Ma, Bin Wang, Tingming Shi, Aijun Tan, Jing Yuan, and Weihong Chen.
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- Environ Int. 2018 Feb 1; 111: 109-116.
BackgroundExposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with lung function decline. However, the underlying mechanisms for the association remain unclear.ObjectivesTo explore potential role of a lung epithelial biomarker, Club cell secretory protein (CC16), in associations between PAH exposures and lung function decline.MethodsWe investigated 3384 adults from the Wuhan-Zhuhai cohort, and followed up at three years after first examination. Linear mixed models was used to quantify dose-response relationships between urinary monohydroxylated PAH metabolites (OH-PAHs) and lung function, as well as OH-PAHs and plasma CC16. Mediation analysis was conducted to investigate role of CC16 in the association between OH-PAHs and lung function. We also estimated the relationships between OH-PAHs and lung function change in three years among participants with different levels of CC16.ResultsEach 1-unit increase of log-transformed total urinary high and low molecular weight OH-PAHs (∑HMW OH-PAH and ∑LMW OH-PAHs) were associated with a 22.59 and 25.25ml reduction of FEV1 respectively, while∑HMW OH-PAH was associated with a 30.38ml reduction of FVC. Moreover, these negative associations between OH-PAHs and lung function levels were significant only among low CC16 group (<15.83ng/ml). CC16 concentration decreased monotonically with increased high molecular weight OH-PAHs (∑HMW OH-PAHs) when ∑HMW OH-PAH concentration was over 0.67μg/mmol Cr. CC16 mediated 22.13% of the association between ∑HMW OH-PAH and FVC among individuals with higher ∑HMW OH-PAH. After three years of follow-up, subjects with low level of plasma CC16 had a significant decline of FVC when exposed to high level of ∑HMW OH-PAH.ConclusionsCC16 play an important role in the association between high molecular weight PAHs and FVC. Individuals with low plasma CC16 level might suffer a decline in lung function when exposed to high level of high molecular weight PAHs.Copyright © 2017. Published by Elsevier Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.