• Shock · Nov 2021

    Hemorrhagic Shock and Resuscitation Causes Glycocalyx Shedding and Endothelial Oxidative Stress Preferentially in the Lung and Intestinal Vasculature.

    • Sarah Abdullah, Mardeen Karim, Mark Legendre, Laura Rodriguez, Jessica Friedman, Aaron Cotton-Betteridge, Robert Drury, Jacob Packer, Chrissy Guidry, Juan Duchesne, Sharven Taghavi, and Olan Jackson-Weaver.
    • Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana.
    • Shock. 2021 Nov 1; 56 (5): 803-812.

    IntroductionHemorrhagic shock has recently been shown to cause shedding of a carbohydrate surface layer of endothelial cells known as the glycocalyx. This shedding of the glycocalyx is thought to be a mediator of the coagulopathy seen in trauma patients. Clinical studies have demonstrated increases in shed glycocalyx in the blood after trauma, and animal studies have measured glycocalyx disruption in blood vessels in the lung, skeletal muscle, and mesentery. However, no study has measured glycocalyx disruption across a wide range of vascular beds to quantify the primary locations of this shedding.MethodsIn the present study, we used a rat model of hemorrhagic shock and resuscitation to more comprehensively assess glycocalyx disruption across a range of organs. Glycocalyx disruption was assessed by fluorescent-labeled wheat germ agglutinin or syndecan-1 antibody staining in flash frozen tissue.ResultsWe found that our model did elicit glycocalyx shedding, as assessed by an increase in plasma syndecan-1 levels. In tissue sections, we found that the greatest glycocalyx disruption occurred in vessels in the lung and intestine. Shedding to a lesser extent was observed in vessels of the brain, heart, and skeletal muscle. Liver vessel glycocalyx was unaffected, and kidney vessels, including the glomerular capillaries, displayed an increase in glycocalyx. We also measured reactive oxygen species (ROS) in the endothelial cells from these organs, and found that the greatest increase in ROS occurred in the two beds with the greatest glycocalyx shedding, the lungs, and intestine. We also detected fibrin deposition in lung vessels following hemorrhage-resuscitation.ConclusionsWe conclude that the endothelium in the lungs and intestine are particularly susceptible to the oxidative stress of hemorrhage-resuscitation, as well as the resulting glycocalyx disruption. Thus, these two vessel beds may be important drivers of coagulopathy in trauma patients.Copyright © 2021 by the Shock Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.