• Ann Emerg Med · Feb 2022

    Comparative Study

    Use of Time-to-Event Analysis to Develop On-Scene Return of Spontaneous Circulation Prediction for Out-of-Hospital Cardiac Arrest Patients.

    • Jeong Ho Park, Jinwook Choi, SangMyeong Lee, Sang Do Shin, and Kyoung Jun Song.
    • Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea; Department of Emergency Medicine, Seoul National University College of Medicine and Hospital, Seoul, Korea; Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.
    • Ann Emerg Med. 2022 Feb 1; 79 (2): 132-144.

    Study ObjectiveWe aimed to train and validate the time to on-scene return of spontaneous circulation prediction models using time-to-event analysis among out-of-hospital cardiac arrest patients.MethodsUsing a Korean population-based out-of-hospital cardiac arrest registry, we selected a total of 105,215 adults with presumed cardiac etiologies between 2013 and 2018. Patients from 2013 to 2017 and from 2018 were analyzed for training and test, respectively. We developed 4 time-to-event analyzing models (Cox proportional hazard [Cox], random survival forest, extreme gradient boosting survival, and DeepHit) and 4 classification models (logistic regression, random forest, extreme gradient boosting, and feedforward neural network). Patient characteristics and Utstein elements collected at the scene were used as predictors. Discrimination and calibration were evaluated by Harrell's C-index and integrated Brier score.ResultsAmong the 105,215 patients (mean age 70 years and 64% men), 86,314 and 18,901 patients belonged to the training and test sets, respectively. On-scene return of spontaneous circulation was achieved in 5,240 (6.1%) patients in the former set and 1,709 (9.0%) patients in the latter. The proportion of emergency medical services (EMS) management was higher and scene time interval longer in the latter. Median time from EMS scene arrival to on-scene return of spontaneous circulation was 8 minutes for both datasets. Classification models showed similar discrimination and poor calibration power compared to survival models; Cox showed high discrimination with the best calibration (C-index [95% confidence interval]: 0.873 [0.865 to 0.882]; integrated Brier score at 30 minutes: 0.060).ConclusionIncorporating time-to-event analysis could lead to improved performance in prediction models and contribute to personalized field EMS resuscitation decisions.Copyright © 2021 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…