• Neurocritical care · Apr 2022

    Accelerating Prediction of Malignant Cerebral Edema After Ischemic Stroke with Automated Image Analysis and Explainable Neural Networks.

    • Hossein Mohammadian Foroushani, Ali Hamzehloo, Atul Kumar, Yasheng Chen, Laura Heitsch, Agnieszka Slowik, Daniel Strbian, Jin-Moo Lee, Daniel S Marcus, and Rajat Dhar.
    • Department of Electrical and Systems Engineering, Washington University in St. Louis McKelvey School of Engineering, 1 Brookings Drive, St. Louis, MO, 63130-4899, USA.
    • Neurocrit Care. 2022 Apr 1; 36 (2): 471482471-482.

    BackgroundMalignant cerebral edema is a devastating complication of stroke, resulting in deterioration and death if hemicraniectomy is not performed prior to herniation. Current approaches for predicting this relatively rare complication often require advanced imaging and still suffer from suboptimal performance. We performed a pilot study to evaluate whether neural networks incorporating data extracted from routine computed tomography (CT) imaging could enhance prediction of edema in a large diverse stroke cohort.MethodsAn automated imaging pipeline retrospectively extracted volumetric data, including cerebrospinal fluid (CSF) volumes and the hemispheric CSF volume ratio, from baseline and 24 h CT scans performed in participants of an international stroke cohort study. Fully connected and long short-term memory (LSTM) neural networks were trained using serial clinical and imaging data to predict those who would require hemicraniectomy or die with midline shift. The performance of these models was tested, in comparison with regression models and the Enhanced Detection of Edema in Malignant Anterior Circulation Stroke (EDEMA) score, using cross-validation to construct precision-recall curves.ResultsTwenty of 598 patients developed malignant edema (12 required surgery, 8 died). The regression model provided 95% recall but only 32% precision (area under the precision-recall curve [AUPRC] 0.74), similar to the EDEMA score (precision 28%, AUPRC 0.66). The fully connected network did not perform better (precision 33%, AUPRC 0.71), but the LSTM model provided 100% recall and 87% precision (AUPRC 0.97) in the overall cohort and the subgroup with a National Institutes of Health Stroke Scale (NIHSS) score ≥ 8 (p = 0.0001 vs. regression and fully connected models). Features providing the most predictive importance were the hemispheric CSF ratio and NIHSS score measured at 24 h.ConclusionsAn LSTM neural network incorporating volumetric data extracted from routine CT scans identified all cases of malignant cerebral edema by 24 h after stroke, with significantly fewer false positives than a fully connected neural network, regression model, and the validated EDEMA score. This preliminary work requires prospective validation but provides proof of principle that a deep learning framework could assist in selecting patients for surgery prior to deterioration.© 2021. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…