• Critical care medicine · Oct 1995

    Review

    Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome.

    • J C Marshall, D J Cook, N V Christou, G R Bernard, C L Sprung, and W J Sibbald.
    • Department of Surgery, University of Toronto, ON, Canada.
    • Crit. Care Med. 1995 Oct 1; 23 (10): 1638-52.

    ObjectiveTo develop an objective scale to measure the severity of the multiple organ dysfunction syndrome as an outcome in critical illness.DesignSystematic literature review; prospective cohort study.SettingSurgical intensive care unit (ICU) of a tertiary-level teaching hospital.PatientsAll patients (n = 692) admitted for > 24 hrs between May 1988 and March 1990.InterventionsNone.Measurements And Main ResultsComputerized database review of MEDLINE identified clinical studies of multiple organ failure that were published between 1969 and 1993. Variables from these studies were evaluated for construct and content validity to identify optimal descriptors of organ dysfunction. Clinical and laboratory data were collected daily to evaluate the performance of these variables individually and in aggregate as an organ dysfunction score. Seven systems defined the multiple organ dysfunction syndrome in more than half of the 30 published reports reviewed. Descriptors meeting criteria for construct and content validity could be identified for five of these seven systems: a) the respiratory system (Po2/FIO2 ratio); b) the renal system (serum creatinine concentration); c) the hepatic system (serum bilirubin concentration); d) the hematologic system (platelet count); and e) the central nervous system (Glasgow Coma Scale). In the absence of an adequate descriptor of cardiovascular dysfunction, we developed a new variable, the pressure-adjusted heart rate, which is calculated as the product of the heart rate and the ratio of central venous pressure to mean arterial pressure. These candidate descriptors of organ dysfunction were then evaluated for criterion validity (ICU mortality rate) using the clinical database. From the first half of the database (the development set), intervals for the most abnormal value of each variable were constructed on a scale from 0 to 4 so that a value of 0 represented essentially normal function and was associated with an ICU mortality rate of < 5%, whereas a value of 4 represented marked functional derangement and an ICU mortality rate of > or = 50%. These intervals were then tested on the second half of the data set (the validation set). Maximal scores for each variable were summed to yield a Multiple Organ Dysfunction Score (maximum of 24). This score correlated in a graded fashion with the ICU mortality rate, both when applied on the first day of ICU admission as a prognostic indicator and when calculated over the ICU stay as an outcome measure. For the latter, ICU mortality was approximately 25% at 9 to 12 points, 50% at 13 to 16 points, 75% at 17 to 20 points, and 100% at levels of > 20 points. The score showed excellent discrimination, as reflected in areas under the receiver operating characteristic curve of 0.936 in the development set and 0.928 in the validation set. The incremental increase in scores over the course of the ICU stay (calculated as the difference between maximal scores and those scores obtained on the first day [i.e., the delta Multiple Organ Dysfunction Score]) also demonstrated a strong correlation with the ICU mortality rate. In a logistic regression model, this incremental increase in scores accounted for more of the explanatory power than admission severity indices.ConclusionsThis multiple organ dysfunction score, constructed using simple physiologic measures of dysfunction in six organ systems, mirrors organ dysfunction as the intensivist sees it and correlates strongly with the ultimate risk of ICU mortality and hospital mortality. The variable, delta Multiple Organ Dysfunction Score, reflects organ dysfunction developing during the ICU stay, which therefore is potentially amenable to therapeutic manipulation. (ABSTRACT TRUNCATED)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…