• Arterioscler. Thromb. Vasc. Biol. · Oct 2013

    Endoplasmic reticulum stress participates in aortic valve calcification in hypercholesterolemic animals.

    • Zhejun Cai, Fei Li, Wei Gong, Wanjun Liu, Quanlu Duan, Chen Chen, Li Ni, Yong Xia, Katherine Cianflone, Nianguo Dong, and Dao Wen Wang.
    • From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine, Columbus, OH (Y.X.); and Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada (K.C.).
    • Arterioscler. Thromb. Vasc. Biol. 2013 Oct 1; 33 (10): 2345-54.

    ObjectivesAortic valve (AV) calcification occurs via a pathophysiological process that includes lipoprotein deposition, inflammation, and osteoblastic differentiation of valvular interstitial cells. Here, we investigated the association between endoplasmic reticulum (ER) stress and AV calcification.Approach And ResultsWe identified ER stress activation in AV of patients with calcified AV stenosis. We generated an AV calcification model in hypercholesterolemic rabbits and mice, respectively, and found marked AV ER stress induction. Classical ER stress inhibitor, tauroursodeoxycholic acid, administration markedly prevented AV calcification, and attenuated AV osteoblastic differentiation and inflammation in both rabbit and mouse models of AV calcification via inhibition of ER stress. In cultured valvular interstitial cells (VICs), we found that oxidized low density lipoprotein (oxLDL) caused ER stress in a cytosolic [Ca](2+)i-dependent manner. OxLDL promoted osteoblastic differentiation via ER stress-mediated protein kinase-like ER kinase/activating transcription factor 4/osteocalcin and inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α)/spliced X-box-binding protein 1/Runx2 pathway, and induced inflammatory responses through IRE1α/c-Jun N-terminal kinase and IRE1α/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in VICs. Inhibition of ER stress by either tauroursodeoxycholic acid or 4-phenyl butyric acid could both suppress oxLDL-induced osteoblastic differentiation and inflammatory responses in VICs.ConclusionsThese data provide novel evidence that ER stress participates in AV calcification development, and suggest that ER stress may be a novel target for AV calcification prevention and treatment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.