• Eur J Cardiothorac Surg · Sep 2015

    Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation.

    • Margaret Passmore, Maria Nataatmadja, Yoke L Fung, Bronwyn Pearse, Sarah Gabriel, Peter Tesar, and John F Fraser.
    • Critical Care Research Group, University of Queensland, Brisbane, Australia m.passmore@uq.edu.au.
    • Eur J Cardiothorac Surg. 2015 Sep 1; 48 (3): e20-9.

    ObjectivesCalcific aortic valve stenosis (CAVS) is an important clinical problem predominantly affecting elderly individuals. Studies suggest that the progression of CAVS is actively regulated with valve endothelial injury leading to inflammation, fibrosis and calcification. The aim of this study was to delineate the possible regulatory role of osteopontin (OPN) on high-mobility group box 1 (HMGB1) function and the associated inflammatory and fibrotic response in CAVS.MethodsAortic valve leaflets were collected from CAVS patients undergoing aortic valve replacement (n = 40), and control aortic valve leaflets were obtained from heart transplant recipients (n = 15). Valves and plasma were analysed by quantitative real-time polymerase chain reaction (PCR), immunohistochemical staining and Western blot. Recombinant OPN or neutralizing OPN antibody was added to cultured endothelial and valvular interstitial cells (VICs), and cell proliferation scores and HMGB1 expression were assessed.ResultsCAVS valves had a decreased total percentage of VICs but increased numbers of infiltrating macrophages relative to control valves. RT-PCR studies showed higher expression of OPN, the inflammatory cytokine tumour necrosis factor-alpha as well as markers of fibrosis, tissue inhibitor of matrix metalloproteinase 1 and matrix metalloproteinase 2 in CAVS valves. Elevated expression of OPN was also observed in plasma of CAVS patients compared with controls. HMGB1 was detected in the secretory granules of cultured valve endothelial and VICs derived from CAVS valves. The addition of exogenous OPN inhibited the proliferation of cultured endothelial and VICs from CAVS valves and was associated with the extracellular expression of HMGB1, whereas neutralizing OPN had the opposite effect.ConclusionsWe conclude that altered OPN expression in CAVS affects cellular HMGB1 function inducing cytoplasmic translocation and secretion of HMGB1 in endothelial cells and VICs, thus indicating a regulatory role for OPN in the progression of CAVS through alteration of HMGB1 function.© The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…