• Bmc Med Inform Decis · Aug 2016

    A hybrid solution for extracting structured medical information from unstructured data in medical records via a double-reading/entry system.

    • Ligang Luo, Liping Li, Jiajia Hu, Xiaozhe Wang, Boulin Hou, Tianze Zhang, and Lue Ping Zhao.
    • LinkDoc Inc, 8 Haidian Street, Block A, 8th Floor, Haidian District, Beijing, China.
    • Bmc Med Inform Decis. 2016 Aug 30; 16: 114.

    BackgroundHealthcare providers generate a huge amount of biomedical data stored in either legacy system (paper-based) format or electronic medical records (EMR) around the world, which are collectively referred to as big biomedical data (BBD). To realize the promise of BBD for clinical use and research, it is an essential step to extract key data elements from unstructured medical records into patient-centered electronic health records with computable data elements. Our objective is to introduce a novel solution, known as a double-reading/entry system (DRESS), for extracting clinical data from unstructured medical records (MR) and creating a semi-structured electronic health record database, as well as to demonstrate its reproducibility empirically.MethodsUtilizing the modern cloud-based technologies, we have developed a comprehensive system that includes multiple subsystems, from capturing MRs in clinics, to securely transferring MRs, storing and managing cloud-based MRs, to facilitating both machine learning and manual reading, and to performing iterative quality control before committing the semi-structured data into the desired database. To evaluate the reproducibility of extracted medical data elements by DRESS, we conduct a blinded reproducibility study, with 100 MRs from patients who have undergone surgical treatment of lung cancer in China. The study uses Kappa statistic to measure concordance of discrete variables, and uses correlation coefficient to measure reproducibility of continuous variables.ResultsUsing the DRESS, we have demonstrated the feasibility of extracting clinical data from unstructured MRs to create semi-structured and patient-centered electronic health record database. The reproducibility study with 100 patient's MRs has shown an overall high reproducibility of 98 %, and varies across six modules (pathology, Radio/chemo therapy, clinical examination, surgery information, medical image and general patient information).ConclusionsDRESS uses a double-reading, double-entry, and an independent adjudication, to manually curate structured data elements from unstructured clinical data. Further, through distributed computing strategies, DRESS protects data privacy by dividing MR data into de-identified modules. Finally, through internet-based computing cloud, DRESS enables many data specialists to work in a virtual environment to achieve the necessary scale of processing thousands MRs within days. This hybrid system represents probably a workable solution to solve the big medical data challenge.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…