• Neurotoxicity research · Dec 2006

    Review

    Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson's disease, schizophrenia and attention deficit hyperactivity disorder.

    • C Mehler-Wex, P Riederer, and M Gerlach.
    • Department of Child and Adolescent Psychiatry and Psychotherapy, Julius-Maximilians-University, Wuerzburg, Germany.
    • Neurotox Res. 2006 Dec 1; 10 (3-4): 167-79.

    AbstractThe basal ganglia form a forebrain system that collects signals from a large part of the neocortex, redistributes these cortical inputs both with respect to one another and with respect to inputs from the limbic system, and then focuses the inputs of this redistributed, integrated signals into particular regions of the frontal lobes and brainstem involved in aspects of motor planning and motor memory. Movement disorders associated with basal ganglia dysfunction comprise a spectrum of abnormalities that range from the hypokinetic disorder (from which Parkinson's disease, PD, is the best-known-example) at one extreme to the hyperkinetic disorder (exemplified by Huntington's disease and hemiballism) at the other. In addition to disorders of movement, major mental disorders including schizophrenic-like states and attention deficit hyperactivity disorder (ADHD) have been linked to abnormalities in the basal ganglia and their allied nuclei. In this paper we discuss recent evidence indicating that a dopamine-induced dysbalance of basal ganglia neurocircuitries may be an important pathophysiological component in PD, schizophrenia and ADHD. According to our model, the deprivation of dopaminergic nigro-striatal input, as in PD, reduces the positive feedback via the direct system, and increases the negative feedback via the indirect system. The critical consequences are an overactivity of the basal ganglia output sites with the resulting inhibition of thalamo-cortical drive. In schizophrenia the serious cognitive deficits might be partly a result of a hyperactivity of the inhibitory dopamine D(2) transmission system. Through this dysinhibition, the thalamus exhibits hyperactivity that overstimulates the cortex resulting in dysfunctions of perception, attention, stimulus distinction, information processing and affective regulation (inducing hallucinations and delusions) and motor disabilities. Recent studies have strongly suggested that a disturbance of the dopaminergic system is also involved in the pathophysiology of ADHD. The most convincing evidence comes from the demonstration of the efficacy of psychostimulants such as the dopamine transporter (DAT) blocker methylphenidate in the symptomatic treatment of ADHD. Genetic studies have shown an association between ADHD and genes involved in dopaminergic neurotransmission (for example the dopamine receptor genes DRD4 and DRD5, and the DAT gene DAT1). DAT knockout mice display a phenotype with increased locomotor activity, which is normalized by psychostimulant treatment. Finally, imaging studies demonstrated an increased density of DAT in the striatum of ADHD patients. Which system is disturbed and whether this system is hyper- or hypoactive is not unambiguously known yet.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.