• Medical image analysis · Oct 2012

    Surface-based multi-template automated hippocampal segmentation: application to temporal lobe epilepsy.

    • Hosung Kim, Tommaso Mansi, Neda Bernasconi, and Andrea Bernasconi.
    • Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
    • Med Image Anal. 2012 Oct 1; 16 (7): 1445-55.

    AbstractIn drug-resistant temporal lobe epilepsy (TLE), detecting hippocampal atrophy on MRI is crucial as it allows defining the surgical target. In addition to atrophy, about 40% of patients present with malrotation, a developmental anomaly characterized by atypical morphologies of the hippocampus and collateral sulcus. We have recently shown that both atrophy and malrotation impact negatively the performance of volume-based techniques. Here, we propose a novel hippocampal segmentation algorithm (SurfMulti) that integrates deformable parametric surfaces, vertex-wise modeling of locoregional texture and shape, and multiple templates in a unified framework. To account for inter-subject variability, including shape variants, we used a library derived from a large database of healthy (n=80) and diseased (n=288) hippocampi. To quantify malrotation, we generated 3D models from manual hippocampal labels and automatically extracted collateral sulci. The accuracy of SurfMulti was evaluated relative to manual labeling and segmentation obtained through a single atlas-based algorithm (FreeSurfer) and a volume-based multi-template approach (Vol-multi) using the Dice similarity index and surface-based shape mapping, for which we computed vertex-wise displacement vectors between automated and manual segmentations. We then correlated segmentation accuracy with malrotation features and atrophy. SurfMulti outperformed FreeSurfer and Vol-multi, and achieved a level of accuracy in TLE patients (Dice=86.9%) virtually identical to healthy controls (Dice=87.5%). Vertex-wise shape mapping showed that SurfMulti had an excellent overlap with manual labels, with sub-millimeter precision. Its performance was not influenced by atrophy or malrotation (|r|<0.20, p>0.2), while FreeSurfer (|r|>0.35, p<0.0001) and Vol-multi (|r|>0.28, p<0.05) were hampered by both anomalies. The magnitude of atrophy detected using SurfMulti was the closest to manual volumetry (Cohen's d: manual=1.71, t=7.6; SurfMulti=1.60, t=7.0; Vol-multi=1.38, t=6.1; FreeSurfer=0.91, t=3.9). The high performance of SurfMulti regardless of cohort, atrophy and shape variants identifies this algorithm as a robust segmentation tool for hippocampal volumetry.Copyright © 2012 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.