-
- René H Tolba, Zoltán Czigány, Suzanne Osorio Lujan, Mihai Oltean, Michael Axelsson, Yelena Akelina, Antonio Di Cataldo, Iren Miko, Istvan Furka, Uta Dahmen, Eiji Kobayashi, Mihai Ionac, and Norbert Nemeth.
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Aachen, Germany.
- Eur Surg Res. 2017 Jan 1; 58 (5-6): 246-262.
BackgroundExpectations towards surgeons in modern surgical practice are extremely high with minimal complication rates and maximal patient safety as paramount objectives. Both of these aims are highly dependent on individual technical skills that require sustained, focused, and efficient training outside the clinical environment. At the same time, there is an increasing moral and ethical pressure to reduce the use of animals in research and training, which has fundamentally changed the practice of microsurgical training and research. Various animal models were introduced and widely used during the mid-20th century, the pioneering era of experimental microsurgery. Since then, high numbers of ex vivo training concepts and quality control measures have been proposed, all aiming to reduce the number of animals without compromising quality and outcome of training.SummaryNumerous microsurgical training courses are available worldwide, but there is no general agreement concerning the standardization of microsurgical training. The major aim of this literature review and recommendation is to give an overview of various aspects of microsurgical training. We introduce here the findings of a previous survey-based analysis of microsurgical courses within our network. Basic principles behind microsurgical training (3Rs, good laboratory practice, 3Cs), considerations around various microsurgical training models, as well as several skill assessment tools are discussed. Recommendations are formulated following intense discussions within the European Society for Surgical Research (ESSR) and the International Society for Experimental Microsurgery (ISEM), based on scientific literature as well as on several decades of experience in the field of experimental (micro)surgery and preclinical research, represented by the contributing authors. Key Messages: Although ex vivo models are crucial for the replacement and reduction of live animal use, living animals are still indispensable at every level of training which aims at more than just a basic introduction to microsurgical techniques. Modern, competency-based microsurgical training is multi-level, implementing different objective assessment tools as outcome measures. A clear consensus on fundamental principles of microsurgical training and more active international collaboration for the sake of standardization are urgently needed.© 2017 S. Karger AG, Basel.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.