• Family practice · Aug 2021

    COVID-19 and the flu: data simulations and computational modelling to guide public health strategies.

    • Verda Tunaligil, Gulsen Meral, Mustafa Resat Dabak, Mehmet Canbulat, and Sıddıka Semahat Demir.
    • SIMMERK Medical Simulation Center, Division of Public Health and Department of Emergency, Disaster Medical Services, TR MoH Health Directorate of Istanbul, Istanbul, Turkey.
    • Fam Pract. 2021 Aug 27; 38 (Suppl 1): i16i22i16-i22.

    BackgroundPandemics threaten lives and economies. This article addresses the global threat of the anticipated overlap of COVID-19 with seasonal-influenza.ObjectivesScientific evidence based on simulation methodology is presented to reveal the impact of a dual outbreak, with scenarios intended for propagation analysis. This article aims at researchers, clinicians of family medicine, general practice and policy-makers worldwide. The implications for the clinical practice of primary health care are discussed. Current research is an effort to explore new directions in epidemiology and health services delivery.MethodsProjections consisted of machine learning, dynamic modelling algorithms and whole simulations. Input data consisted of global indicators of infectious diseases. Four simulations were run for '20% versus 60% flu-vaccinated populations' and '10 versus 20 personal contacts'. Outputs consisted of numerical values and mathematical graphs. Outputs consisted of numbers for 'never infected', 'vaccinated', 'infected/recovered', 'symptomatic/asymptomatic' and 'deceased' individuals. Peaks, percentages, R0, durations are reported.ResultsThe best-case scenario was one with a higher flu-vaccination rate and fewer contacts. The reverse generated the worst outcomes, likely to disrupt the provision of vital community services. Both measures were proven effective; however, results demonstrated that 'increasing flu-vaccination rates' is a more powerful strategy than 'limiting social contacts'.ConclusionsResults support two affordable preventive measures: (i) to globally increase influenza-vaccination rates, (ii) to limit the number of personal contacts during outbreaks. The authors endorse changing practices and research incentives towards multidisciplinary collaborations. The urgency of the situation is a call for international health policy to promote interdisciplinary modern technologies in public health engineering.© The Author(s) 2021. Published by Oxford University Press. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…