• Magn Reson Med · Jun 2009

    Estimation of k-space trajectories in spiral MRI.

    • Hao Tan and Craig H Meyer.
    • Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22908, USA.
    • Magn Reson Med. 2009 Jun 1; 61 (6): 1396-404.

    AbstractFor non-Cartesian data acquisition in MRI, k-space trajectory infidelity due to eddy current effects and other hardware imperfections will blur and distort the reconstructed images. Even with the shielded gradients and eddy current compensation techniques of current scanners, the deviation between the actual k-space trajectory and the requested trajectory remains a major reason for image artifacts in non-Cartesian MRI. It is often not practical to measure the k-space trajectory for each imaging slice. It has been reported that better image quality is achieved in radial scanning by correcting anisotropic delays on different physical gradient axes. In this article the delay model is applied in spiral k-space trajectory estimation to reduce image artifacts. Then a novel estimation method combining the anisotropic delay model and a simple convolution eddy current model further reduces the artifact level in spiral image reconstruction. The root mean square error and peak error in both phantom and in vivo images reconstructed using the estimated trajectories are reduced substantially compared to the results achieved by only tuning delays. After a one-time calibration, it is thus possible to get an accurate estimate of the spiral trajectory and a high-quality image reconstruction for an arbitrary scan plane.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.