• Cardiovascular research · Feb 2001

    Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2.

    • K Teichert-Kuliszewska, P C Maisonpierre, N Jones, A I Campbell, Z Master, M P Bendeck, K Alitalo, D J Dumont, G D Yancopoulos, and D J Stewart.
    • Terrence Donnelly Heart Center and Division of Cardiology, St. Michael's Hospital, University of Toronto, 30 Bond St., Ontario, M5B 1W8, Toronto, Canada.
    • Cardiovasc. Res. 2001 Feb 16; 49 (3): 659-70.

    AbstractThe endothelial cell (EC) specific tyrosine kinase receptor, Tie2, interacts with at least two ligands, angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2). Ang1 stimulates Tie2 receptor autophosphorylation, while Ang2 has been reported to inhibit Ang1-induced Tie2 receptor autophosphorylation. We studied the effects of Ang1 and Ang2 in an in vitro model of angiogenesis. Human ECs (HUVEC), cultured on 3-D fibrin matrices, were treated with conditioned media (CM) from stably transfected cells expressing human Ang1 or Ang2, or with purified recombinant proteins. EC tube formation was measured as a differentiation index (DI), calculated as the ratio of total tube length over residual of EC monolayer. CM from Ang1 overexpressing A10 SMC or HEK293T cells induced profound HUVEC differentiation, resulting in the formation of extensive capillary-like tubes within 48 h (DI: 24.58+/-5.91 and 19.13+/-7.86, respectively) vs. control (DI: 2.73+/-1.68 and 2.15+/-1.45, respectively, both P<0.001). Interestingly, CM from two independent cell lines overexpressing Ang2 also produced a significant increase in EC differentiation (DI: 9.22+/-3.00 and 9.72+/-4.84, both P<0.005 vs. control) although the degree of angiogenesis was significantly less then that seen with Ang1. Addition of Ang1* (a genetically engineered variant of naturally occurring Ang1) or Ang2 also resulted in dose dependent increases in DI, which were blocked by an excess of soluble Tie2 receptor (20 microg/ml). Both Ang1* and Ang2 induced modest increases in [3H]thymidine incorporation into HUVECs (20 and 26%, respectively), which were inhibited by excess soluble Tie2. Although Ang2 was unable to induce significant Tie2 receptor phosphorylation during a 5-min exposure, a 24-h pretreatment with Ang2, followed by brief re-exposure, produced Tie2 phosphorylation in HUVEC comparable to that produced by Ang1*. These results demonstrate for the first time that Ang2 may have a direct role in stimulating Tie2 receptor signaling and inducing in vitro angiogenesis. Our findings suggest that the physiological role of Ang2 is more complex than previously recognized: acting alternately to promote or blunt Tie2 receptor signaling in endothelial cells, depending on local conditions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.