• J Formos Med Assoc · Jun 2022

    Elastography ultrasound with machine learning improves the diagnostic performance of traditional ultrasound in predicting kidney fibrosis.

    • Minyan Zhu, Liyong Ma, Wenqi Yang, Lumin Tang, Hongli Li, Min Zheng, and Shan Mou.
    • Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
    • J Formos Med Assoc. 2022 Jun 1; 121 (6): 1062-1072.

    BackgroundNoninvasively predicting kidney tubulointerstitial fibrosis is important because it's closely correlated with the development and prognosis of chronic kidney disease (CKD). Most studies of shear wave elastography (SWE) in CKD were limited to non-linear statistical dependencies and didn't fully consider variables' interactions. Therefore, support vector machine (SVM) of machine learning was used to assess the prediction value of SWE and traditional ultrasound techniques in kidney fibrosis.MethodsWe consecutively recruited 117 CKD patients with kidney biopsy. SWE, B-mode, color Doppler flow imaging ultrasound and hematological exams were performed on the day of kidney biopsy. Kidney tubulointerstitial fibrosis was graded by semi-quantification of Masson staining. The diagnostic performances were accessed by ROC analysis.ResultsTubulointerstitial fibrosis area was significantly correlated with eGFR among CKD patients (R = 0.450, P < 0.001). AUC of SWE, combined with B-mode and blood flow ultrasound by SVM, was 0.8303 (sensitivity, 77.19%; specificity, 71.67%) for diagnosing tubulointerstitial fibrosis (>10%), higher than either traditional ultrasound, or SWE (AUC, 0.6735 [sensitivity, 67.74%; specificity, 65.45%]; 0.5391 [sensitivity, 55.56%; specificity, 53.33%] respectively. Delong test, p < 0.05); For diagnosing different grades of tubulointerstitial fibrosis, SWE combined with traditional ultrasound by SVM, had AUCs of 0.6429 for mild tubulointerstitial fibrosis (11%-25%), and 0.9431 for moderate to severe tubulointerstitial fibrosis (>50%), higher than other methods (Delong test, p < 0.05).ConclusionSWE with SVM modeling could improve the diagnostic performance of traditional kidney ultrasound in predicting different kidney tubulointerstitial fibrosis grades among CKD patients.Copyright © 2021 Formosan Medical Association. Published by Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.