• Emerg Med J · May 2022

    Multicenter Study

    Emergency medicine patient wait time multivariable prediction models: a multicentre derivation and validation study.

    • Katie Walker, Jirayus Jiarpakdee, Anne Loupis, Chakkrit Tantithamthavorn, Keith Joe, Michael Ben-Meir, Hamed Akhlaghi, Jennie Hutton, Wei Wang, Michael Stephenson, Gabriel Blecher, Buntine Paul, Amy Sweeny, Burak Turhan, and Australasian College for Emergency Medicine, Clinical Trials Network.
    • Emergency Department, Casey Hospital, Berwick, Victoria, Australia katie_walker01@yahoo.com.au.
    • Emerg Med J. 2022 May 1; 39 (5): 386-393.

    ObjectivePatients, families and community members would like emergency department wait time visibility. This would improve patient journeys through emergency medicine. The study objective was to derive, internally and externally validate machine learning models to predict emergency patient wait times that are applicable to a wide variety of emergency departments.MethodsTwelve emergency departments provided 3 years of retrospective administrative data from Australia (2017-2019). Descriptive and exploratory analyses were undertaken on the datasets. Statistical and machine learning models were developed to predict wait times at each site and were internally and externally validated. Model performance was tested on COVID-19 period data (January to June 2020).ResultsThere were 1 930 609 patient episodes analysed and median site wait times varied from 24 to 54 min. Individual site model prediction median absolute errors varied from±22.6 min (95% CI 22.4 to 22.9) to ±44.0 min (95% CI 43.4 to 44.4). Global model prediction median absolute errors varied from ±33.9 min (95% CI 33.4 to 34.0) to ±43.8 min (95% CI 43.7 to 43.9). Random forest and linear regression models performed the best, rolling average models underestimated wait times. Important variables were triage category, last-k patient average wait time and arrival time. Wait time prediction models are not transferable across hospitals. Models performed well during the COVID-19 lockdown period.ConclusionsElectronic emergency demographic and flow information can be used to approximate emergency patient wait times. A general model is less accurate if applied without site-specific factors.© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.