-
Arthritis Res. Ther. · Aug 2015
The effects of experimental knee pain on lower limb corticospinal and motor cortex excitability.
- David Andrew Rice, Thomas Graven-Nielsen, Gwyn Nancy Lewis, Peter John McNair, and Nicola Dalbeth.
- Health and Rehabilitation Research Institute, Auckland University of Technology, 55 Wellesley Street East, Auckland, 1010, New Zealand. david.rice@aut.ac.nz.
- Arthritis Res. Ther. 2015 Aug 12; 17: 204.
IntroductionNotable weakness of the quadriceps muscles is typically observed as a consequence of knee joint arthritis, knee surgery and knee injury. This is partly due to ongoing neural inhibition that prevents the central nervous system from fully activating the quadriceps, a process known as arthrogenic muscle inhibition (AMI). To investigate the mechanisms underlying AMI, this study explored the effects of experimental knee pain on lower limb corticospinal and motor cortex excitability.MethodsTwenty-four healthy volunteers participated in this study. In experiment 1, experimental knee pain was induced by the injection of hypertonic saline into the infrapatellar fat pad (n = 18). In experiment 2, isotonic saline was injected into the fat pad as a non-painful control (n = 8). Pain intensity was measured on a 10-cm electronic visual analogue scale. Transcranial magnetic stimulation and electromyography were used to measure lower limb motor-evoked potential amplitude and short-interval intracortical inhibition before and after the injection.ResultsThe peak VAS score following hypertonic saline (5.0 ± 0.5 cm) was higher than after isotonic saline (p <0.001). Compared with baseline, there was a significant increase in vastus lateralis (p = 0.02) and vastus medialis motor-evoked potential amplitude (p = 0.02) during experimental knee pain that was not apparent during the control condition. Biceps femoris and tibialis anterior motor-evoked potential amplitude did not change following injection (all p >0.05). There was no change in short-interval intracortical inhibition measured from vastus lateralis following injection (both p >0.05).ConclusionsQuadriceps corticospinal excitability increases during experimental knee pain, providing no evidence for a supraspinal contribution to quadriceps AMI.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.