• Resuscitation · Oct 2021

    Early recognition of a caller's emotion in out-of-hospital cardiac arrest dispatching: An artificial intelligence approach.

    • Kuan-Chen Chin, Tzu-Chun Hsieh, Wen-Chu Chiang, Yu-Chun Chien, Jen-Tung Sun, Hao-Yang Lin, Ming-Ju Hsieh, Chi-Wei Yang, Albert Y Chen, and Matthew Huei-Ming Ma.
    • Department of Emergency Medicine, Taipei Hospital, Ministry of Health and Welfare, No.127, Su-Yuan Rd., Hsin-Chuang Dist., New Taipei City 242, Taiwan.
    • Resuscitation. 2021 Oct 1; 167: 144-150.

    AimThis study aimed to develop an AI model for detecting a caller's emotional state during out-of-hospital cardiac arrest calls by processing audio recordings of dispatch communications.MethodsAudio recordings of 337 out-of-hospital cardiac arrest calls from March-April 2011 were retrieved. The callers' emotional state was classified based on the emotional content and cooperative scores. Mel-frequency cepstral coefficients extracted essential information from the voice signals. A support vector machine was utilised for the automatic judgement, and repeated random sub-sampling cross validation (RRS-CV) was applied to evaluate robustness. The results from the artificial intelligence classifier were compared with the consensus of expert reviewers.ResultsThe audio recordings were classified into five emotional content and cooperative score levels. The proposed model had an average positive predictive value of 72.97%, a negative predictive value of 93.47%, sensitivity of 38.76%, and specificity of 98.29%. If only the first 10 seconds of the recordings were considered, it had an average positive predictive value of 84.62%, a negative predictive value of 93.57%, sensitivity of 52.38%, and specificity of 98.64%. The artificial intelligence model's performance maintained preferable results for emotionally stable cases.ConclusionArtificial intelligence models can possibly facilitate the judgement of callers' emotional states during dispatch conversations. This model has the potential to be utilised in practice, by pre-screening emotionally stable callers, thus allowing dispatchers to focus on cases that are judged to be emotionally unstable. Further research and validation are required to improve the model's performance and make it suitable for the general population.Copyright © 2021. Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.