-
- Chantal W P M Hukkelhoven, Anneke J J Rampen, Andrew I R Maas, Elana Farace, J Dik F Habbema, Anthony Marmarou, Lawrence F Marshall, Gordon D Murray, and Ewout W Steyerberg.
- Center for Medical Decision Making Sciences, Department of Public Health, Erasmus MC-University Medical Center Rotterdam, P.O. Box 1739, 3000 DR Rotterdam, The Netherlands.
- J Clin Epidemiol. 2006 Feb 1;59(2):132-43.
ObjectiveVarious prognostic models have been developed to predict outcome after traumatic brain injury (TBI). We aimed to determine the validity of six models that used baseline clinical and computed tomographic characteristics to predict mortality or unfavorable outcome at 6 months or later after severe or moderate TBI.Study Design And SettingThe validity was studied in two selected series of TBI patients enrolled in clinical trials (Tirilazad trials; n = 2,269; International Selfotel Trial; n = 409) and in two unselected series of patients consecutively admitted to participating centers (European Brain Injury Consortium [EBIC] survey; n = 796; Traumatic Coma Data Bank; n = 746). Validity was indicated by discriminative ability (AUC) and calibration (Hosmer-Lemeshow goodness-of-fit test).ResultsThe models varied in number of predictors (four to seven) and in development technique (two prediction trees and four logistic regression models). Discriminative ability varied widely (AUC: .61-.89), but calibration was poor for most models. Better discrimination was observed for logistic regression models compared with trees, and for models including more predictors. Further, discrimination was better when tested on unselected series that contained more heterogeneous populations.ConclusionOur findings emphasize the need for external validation of prognostic models. The satisfactory discrimination indicates that logistic regression models, developed on large samples, can be used for classifying TBI patients according to prognostic risk.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.